Robot Fly

Tinker, Tailor, Robot, Fly

Designing an automated fly implied having the ability to make lightweight, miniature working parts, a process that Wood says took up the bulk of his doctoral study, because of the lack of any previous research on which to draw. “For years, the thrust of our work was ‘How do we do this?'” says Wood. “There was no existing fabrication paradigm, given the scale we were operating on, the speed we wanted to operate with, and things like cost, turnaround, and robustness.” His research group developed and fabricated a laser carving system that could meticulously cut, shape, and bend sheets of carbon fiber and polymer – both strong but lightweight materials – into the necessary microparts.

And how to power those wings to beat 120 times per second? To keep this 60-milligram robot (the weight of a few grains of rice) with a 3-centimeter wingspan to a minimal size and weight, Wood says, you can’t simply use a shrunken version of the heavy DC (direct current) motors used in most robots. So he and his team settled on a simple actuator: in this case, a layered composite that bends when electricity is applied, thereby powering a micro-scale gearbox hooked up to the wings. Wood says the actuator works even better than its biological inspiration. The power density – a measure of power output as a function of mass – of a fly’s wing muscles is around 80 watts per kilogram; Wood’s wing design produces more than 400 watts per kilogram.

The first takeoff occurred late one evening last March, as Wood worked alone in his office, his colleagues gone for the evening. As the fly rose, Wood jumped up in celebration, quickly verified that his camera had captured the flight, and let out a sigh of relief.

Related: Robo Insect FlightMini Helicopter Masters Insect Navigation TrickMagnificent Flying Machine