Author Archives: curiouscat

Science Explained: Wind Powered Vehicle Traveling Faster Than the Wind

This is an interesting explanation of a the physics involved with vehicle propulsion. And it is a great video showing the scientific method at work.

They only touch on it a little bit but the need for creating 4 versions of the small treadmill device to illustrate the principles in action is a great example of how science inquiry and engineering work. There are often many failed attempts before an engineering solution to the issue involved can be properly created (video on Xyla Foxlin’s efforts: Building the Vehicle Physicists Called Impossible).

Enjoy the videos.

Veritasium is also offering 3 prizes to split the $10,000 for 1 minute videos that highlight science communicators with his Veritasium Science Communication Contest.

Related: The Amazing Reality of Genes and The History of Scientific InquiryScience Explained: Momentum For String of Metal BeadsCircumhorizontal Arcs – Fire Rainbows – Cloud RainbowsScientific Inquiry Leads to Using Fluoride for Healthy Teeth

Huge Proposed Increases in USA Government Science and Engineering Support

The Biden administration has proposed greatly increasing USA government spending on science and engineering. They are proposing levels last seen in the 1960s when the USA was most committed to science and engineering spending (as most visibly seen in support for NASA).

Advance U.S. leadership in critical technologies and upgrade America’s research infrastructure. U.S. leadership in new technologies—from artificial intelligence to biotechnology to computing—is critical to both our future economic competitiveness and our national security. Based on bipartisan proposals, President Biden is calling on Congress to invest $50 billion in the National Science Foundation (NSF), creating a technology directorate that will collaborate with and build on existing programs across the government. It will focus on fields like semiconductors and advanced computing, advanced communications technology, advanced energy technologies, and biotechnology. He also is calling on Congress to provide $30 billion in additional funding for R&D that spurs innovation and job creation, including in rural areas. His plan also will invest $40 billion in upgrading research infrastructure in laboratories across the country, including brick-and-mortar facilities and computing capabilities and networks. These funds would be allocated across the federal R&D agencies, including at the Department of Energy. Half of those funds will be reserved for Historically Black College and Universities (HBCUs) and other Minority Serving Institutions, including the creation of a new national lab focused on climate that will be affiliated with an HBCU.

Establish the United States as a leader in climate science, innovation, and R&D. The President is calling on Congress to invest $35 billion in the full range of solutions needed to achieve technology breakthroughs that address the climate crisis and position America as the global leader in clean energy technology and clean energy jobs. This includes launching ARPA-C to develop new methods for reducing emissions and building climate resilience, as well as expanding across-the-board funding for climate research. In addition to a $5 billion increase in funding for other climate-focused research, his plan will invest $15 billion in demonstration projects for climate R&D priorities, including utility-scale energy storage, carbon capture and storage, hydrogen, advanced nuclear, rare earth element separations, floating offshore wind, biofuel/bioproducts, quantum computing, and electric vehicles, as well as strengthening U.S. technological leadership in these areas in global markets.

Eliminate racial and gender inequities in research and development and science, technology, engineering, and math. Discrimination leads to less innovation: one study found that innovation in the United States will quadruple if women, people of color, and children from low-income families invented at the rate of groups who are not held back by discrimination and structural barriers. Persistent inequities in access to R&D dollars and to careers in innovation industries prevents the U.S. economy from reaching its full potential. President Biden is calling on Congress to make a $10 billion R&D investment at HBCUs and other MSIs. He also is calling on Congress to invest $15 billion in creating up to 200 centers of excellence that serve as research incubators at HBCUs and other MSIs to provide graduate fellowships and other opportunities for underserved populations, including through pre-college programs.

This text is from The White House Infrastructure Plan (The American Jobs Plan). Likely this link will stop working in several years (once a new administration takes over.
photo of NASA's Mars Rover: Curiosity
Continue reading

Creating Low-cost Construction Materials Using Recycled Plastic Waste

Nzambi Matee is a materials engineer and head of Gjenge Makers (in Kenya), which produces sustainable low-cost construction materials made of recycled plastic waste and sand. For her work, Nzambi Matee was recently named a Young Champions of the Earth by the United Nations Environment Programme.

Building blocks for a greener Nairobi

Through trial and error, she and her team learned that some plastics bind together better than others. Her project was given a boost when Matee won a scholarship to attend a social entrepreneurship training programme in the United States of America. With her paver samples packed in her luggage, she used the material labs in the University of Colorado Boulder to further test and refine the ratios of sand to plastic.

It is wonderful to see young people using an understanding of engineering to find ways to improve the world. Taking waste plastic and creating usable products will help reduce pollution and create a better world. We need quite a bit of effort to deal with plastic waste, so I look forward to learning about many more ideas turned into practical solutions in the real world.

Related: Cleaning Up the Plastic Pollution in Our OceansPedal Powered Washing MachineProtecting Cows with Lion LightsDrone Deliveries to Hospitals in Rwanda

Molecular Motor Proteins

Webcast on amazing processes inside cells by Ron Vale.

Molecular motor proteins are fascinating enzymes that power much of the movement performed by living organisms. The webcast provides an overview of the motors that move along cytoskeletal tracks (kinesin and dynein which move along microtubules and myosin which moves along actin). The talk first describes the broad spectrum of biological roles that kinesin, dynein and myosin play in cells. The talk then discusses how these nanoscale proteins convert energy from ATP hydrolysis into unidirectional motion and force production, and compares common principles of kinesin and myosin. The talk concludes by discussing the role of motor proteins in disease and how drugs that modulate motor protein activity can treat human disease.

Ron Vale is a Professor of Cellular and Molecular Pharmacology at the University of California, San Francisco and an Investigator of the Howard Hughes Medical Institute. He is also the founder of the iBiology project.

Related: Animations of Motor Proteins Moving Material Inside CellsScience Explained: How Cells React to Invading VirusesLooking Inside Living Cells

Popular Posts on the Curious Cat Science and Engineering Blog in the Last Decade

These were the most popular (by number of page views) posts on our blog in the last decade.

photo of John Hunter with snow covered mountain peaks in the background

John Hunter, Olympic National Park (where the mountain peaks are colder and covered in snow)

Continue reading

Backyard Wildlife: Squirrel Gathering Leaves for Its Nest

I saw this squirrel gathering leaves for its nest in its mouth and then climbing a tree in my backyard. It repeated this many times all morning. I saw it doing so at least 5 times and likely it did so many times when I did not see it.

See more backyard wildlife posts on the Curious Cat Science Blog

Related: Squirrel Eating Holly BerriesBackyard Wildlife: Red-tailed HawkBackyard Wildlife: Family of Raccoons

Regeneron High School Science Talent Search 2019

$3.1 million in prizes was awarded through the Regeneron Science Talent Search 2019, including $2,000 to each of the top 300 scholars and their schools. The top award was for $250,000. If you want to watch the video without knowing the winner, watch it before reading the rest of this post.

Every year the accomplishments of high school students provide amazing hope for the future. I am glad for the organizations that highlight the efforts of these students and provide awards for a few of the most amazing accomplishments. The top 40 students all get at least $25,000 (with the top 10 getting more).

Continue reading

Appropriate Technology: a Microscope and Centrifuge for Under $1

Malaria is estimated to have killed more than half the people that have ever lived. And it continues to kill millions. One big challenge is diagnosing malaria is difficult (those infected have flu like symptoms).

The video shows two great appropriate technology solutions to help diagnose malaria and save millions of lives. Manu Prakash from Stanford talks about 2 of his labs’ inventions the Foldscope and the Paperfuge. Combined these cost only 68 cents and they can be used to diagnose Malaria. Both of these are examples not only of simple, brilliant design, but of how engineering is used to make a positive dent in the world.

Read more about the Paperfuge: an ultra-low cost, hand-powered centrifuge inspired by the mechanics of a whirligig toy (open access paper).

This solution also shows the huge benefit people everywhere have gained when immigrants can take their skills and desires to institutions like Stanford to create solutions that greatly benefit the world. This powerful force has been creating huge benefits that we all have enjoyed for decades.

Related: Appropriate Technology and Focus on Improving Lives at MIT (2014)$1 Device To Give Throat Cancer Patients Their Voice Again (2016)Video showing malaria breaking into cell (2011)Engineering: Cellphone Microscope (2009)One Scientists 20 Year Effort to Defeat Dengue Fever (2012)

Scientists Watch Single Cell Organisms Evolve Multicellular Trait in Response to Predation

The scientists used the ciliate predator Paramecium tetraurelia to select for the de novo evolution of multicellularity in outcrossed populations of C. reinhardtii. They show that multicellular life cycles that evolved were passed on to future generations (the change was heritable). The evolved multicellular life cycles are stable over thousands of asexual generations in the absence of predators. Because C. reinhardtii has no multicellular ancestors, these experiments represent a novel origin of multicellularity.

De novo origins of multicellularity in response to predation

Here we show that de novo origins of simple multicellularity can evolve in response to predation. We subjected outcrossed populations of the unicellular green alga Chlamydomonas reinhardtii to selection by the filter-feeding predator Paramecium tetraurelia. Two of five experimental populations evolved multicellular structures not observed in unselected control populations within ~750 asexual generations.

The control populations remained unicellular. The populations subjected to predation evolved in different ways including one that formed stereotypic eight-celled clusters (Fig. 1A), with an apparent unicellular and tetrad life stage.

electron microscope images of multicellular colonies from evolved populations

Scanning electron micrographs of representative multicellular colonies from evolved populations. (A) Shows an amorphous cluster from population B2. Cell number varies greatly between clusters in this clone and between clones in this population. (B) Shows an eight-celled cluster from population B5. Octads were frequently observed in both populations.

an external membrane is visible around both evolved multicellular colonies, indicating that they formed clonally via repeated cell division within the cluster, rather than via aggregation.

The article also provides details on the scientific inquiry process where theory meets practical realities of observation. I think these ideas are very important and we often gloss over such details. This article was shared as an open access article and is written so that those who are interested in science but are not scientists can understand, which is a valuable. The research was funded by USA National Science Foundation, the John Templeton Foundation, the NASA Astrobiology Institute, a NASA Postdoctoral Program Fellowship and a Packard Foundation Fellowship. And the researchers work at public and private universities. Such research should all be published in an open access manner.

Related: The Amazing Reality of Genes and The History of Scientific InquiryParasite Evolved from Cnidarians (Jellyfish etc.)Why Don’t All Ant Species Replace Queens in the Colony, Since Some DoScientific Inquiry Leads to Using Fluoride for Healthy TeethMechanical Gears Found in Jumping Insects