Author Archives: curiouscat

National Girls Collaborative Project for STEM

The National Girls Collaborative Project for science, technology, engineering, and mathematics (STEM) collaborates with those seeking to increase the participation of girls in STEM feeder activities. The goal is to encourage girls to pursue careers in science, technology, engineering, and math.

Collaboration as a Means to Building Capacity: Results and Future Directions of the National Girls Collaborative Project:

The purpose of the NGCP is to extend the capacity, impact, and sustainability of
existing and evolving girl-serving STEM projects and programs. The NGCP is structured to bring organizations together to compare needs and resources, to share information, and to plan strategically to expand STEM–related opportunities for girls.

Although we are still refining it, the NGCP collaborative model has shown its effectiveness through increased collaboration and minigrant projects with sustained results. As we have described, the success to date of the NGCP in developing collaborations has been demonstrated via data from the collaboration rubric, mini-grant reports, and metrics that show how collaborative activities have increased over the duration of the NGCP projects. As NGCP expands over the next few years to provide regional collaboratives across the entire United States and Puerto Rico, we will continue our assessment of its impact and hope to be able to report its influence on building capacity to attract and retain girls in STEM.

I support programs encouraging STEM activities for girls – and boys. NSF data shows for 2005 shows women outnumbered men in undergraduate degree in science and engineering. For post-graduate degrees men still outnumbering women but that gap has been reducing and seems like it will continue to. And the representations in the workplace seem poised to continue to show a reducing number of men and increasing number of women. Engineering is an example of an area with far more men than women graduating – the imbalance is equivalent to the imbalance the other way for psychology.

Related: Girls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyFIRST Robotics in MinnesotaKids in the Lab: Getting High-Schoolers Hooked on Science

Single-Celled Giant Provides New Early-Evolution Perspective

Discovery of Giant Roaming Deep Sea Protist Provides New Perspective on Animal Evolution
Biologist Mikhail “Misha” Matz and his colleagues recently discovered the grape-sized protists and their complex tracks on the ocean floor near the Bahamas. DNA analysis confirmed that the giant protist found by Matz and his colleagues in the Bahamas is Gromia sphaerica, a species previously known only from the Arabian Sea.

Matz says the protists probably move by sending leg-like extensions, called pseudopodia, out of their cells in all directions. The pseudopodia then grab onto mud in one direction and the organism rolls that way, leaving a track. Hr says the giant protists’ bubble-like body design is probably one of the planet’s oldest macroscopic body designs, which may have existed for 1.8 billion years.

“I personally think now that the whole Precambrian may have been exclusively the reign of protists,” says Matz. “Our observations open up this possible way of interpreting the Precambrian fossil record.”

He says the appearance of all the animal body plans during the Cambrian explosion might not just be an artifact of the fossil record. There are likely other mechanisms that explain the burst-like origin of diverse multicellular life forms.

Single-Celled Giant Upends Early Evolution

Slowly rolling across the ocean floor, a humble single-celled creature is poised to revolutionize our understanding of how complex life evolved on Earth.

A distant relative of microscopic amoebas, the grape-sized Gromia sphaerica was discovered once before, lying motionless at the bottom of the Arabian Sea. But when Mikhail Matz of the University of Texas at Austin and a group of researchers stumbled across a group of G. sphaerica off the coast of the Bahamas, the creatures were leaving trails behind them up to 50 centimeters (20 inches) long in the mud.

The trouble is, single-celled critters aren’t supposed to be able to leave trails. The oldest fossils of animal trails, called ‘trace fossils’, date to around 580 million years ago, and paleontologists always figured they must have been made by multicellular animals with complex, symmetrical bodies.

Related: Lancelet Genome Provides Answers on EvolutionMicroRNAs Emerged Early in EvolutionFossils of Sea MonsterSea Urchin Genome

Ender in Exile by Orson Scott Card

cover of Ender in Exile

Ender in Exile by Orson Scott Card has just been published. It is the ninth book in the Ender Wiggen series that began with Ender’s Game (Hugo and Nebula book award winner). I love the Ender series and have a table showing the sequence of the books. The books have not been published in the order of events in the fictional world. Ender in Exile is directly follows Ender’s Game (which makes it 3rd in story order – since Ender’s Shadow took place concurrently with Ender’s Game).

You can listen to Orson Scott Card read from Ender in Exile.

I include this post because I enjoyed the book. It doesn’t really have much to do with science or engineering but here is a quote from the book (page 106): “Besides, that’s what science was – the sharing of information the pooling of knowledge. That’s my gene pool, Afriama, he thought. The meme pool, the collective knowledge of science. What I discover here, what I learn, the problems I solve – those will be my children.”

Enjoy the book, and if you have not read Ender’s Game I highly recommend it. You can read the original Ender’s Game short story online. And if you haven’t read The Investment Counselor (about Jane, Ender’s computer companion) it is excellent (included in First Meetings in Ender’s Universe)

Related: The Last Lecture (book)Science BooksParasite RexScience and Engineering Gadgets and GiftsCreate Your Own Book

DoE: Minority Science and Engineering Improvement Program

The United States Department of Education’s Minority Science and Engineering Improvement Program (MSEIP) provides funds to schools to provide awards to students. 20 new awards (average value of $139,000) were awarded this year. That brings total funding this year to 71 awards (50 continue from previous years). Institutions recieving funds include: Clark Atlanta University, Rust College, New Mexico State University, Spelman College, Virginia State University and the College of Menominee Nation.

The program is designed to effect long-range improvement in science at predominantly minority and engineering education programs to increase the participation of underrepresented ethnic minorities, particularly minority women, into scientific and technological careers.

Wiley College, one of the new recipients, aims to increase the number of science majors, especially in the fields of biology and chemistry. A key feature of this grant is the creation of a high school science competition that will allow local and regional high school students to visit the campus and compete in a variety of scientific events.

This event will bring five area high schools together to compete in ten scientific events based on biology, chemistry, mathematics and physics. Individual first-place winners will be given scholarships to Wiley College. There will also be an overall grand champion awarded. This event will allow high school students to experience life at Wiley College and the possibilities of a career in science.

“This event not only gives students a financial reason to enroll at Wiley, but also allows them to become familiar with the campus and its faculty and students, said Dr. Shumate. “This grant also furthers a connection between Wiley and both the University of Texas at Dallas and the University of Arkansas, allowing current Wiley students to attend these schools in the summer for biomedical research.”

Wiley hosts HS science competition Saturday

Related: NSF Undergraduate STEM ScholarshipsLoan Forgiveness Program for Engineering StudentsA Life-changing GiftScience and Engineering Scholarships and Fellowships Directoryscience scholarships posts

Looking for Signs of Dark Matter Over Antarctica

Dark Matter Proof Found Over Antarctica?

High-energy electrons captured over Antarctica could reveal the presence of a nearby but mysterious astrophysical object that’s bombarding Earth with cosmic rays, researchers say. Or the electrons may be the long-awaited physical evidence of elusive dark matter.

Either way, the unusual particles are exciting for astrophysicists, who say they could someday confirm or deny decades of unproven theories. “In the first case, we have now seen for the first time a nearby source of cosmic rays.

Cosmic rays are not beams per se but are any protons, electrons, and other subatomic particles that careen toward Earth from a variety of sources, including the supernova explosions that mark the deaths of stars.

Most of the cosmic electrons that reach Earth are low-energy, because the highest-energy ones fizzle the fastest and don’t last long enough to get here.

Related: Dark CosmosFinding Dark MatterExplaining the Missing AntimatterMore Mysterious Space PhenomenonCosmology Questions Answered

Wednesday Fun: Dancing Robot Hexapod

Dancing Robot Hexapod

Created by students from the Upper Austria University of Applied Science for the Hexapod Robot competition that happens yearly, this dancing robot strutted its six legs, costumed with hat, sunglasses and Ali-G looking goat tee and used its metal joints to prove it has got rhythm. It is no wonder it is the winner, for it is highly entertaining!

Related: RoboCup German Open 2008LEGO Sumo Robotic ChampionshipMusical RobotsRobo-One Grand Championship in Tokyo

Scientists With Lots of Monitors Onboard Ship

photo of computer monitors onboard ship

Fun blog by Linds, a geophysicist, with fun name and tagline: PhD = Pretty huge Dork There’s no crying in grad school! I enjoy including some posts on scientists at work (and plan on trying to intentionally do more of that). The photo shows her office onboard ship – pretty impressive. I thought this monitor was cool.

The boat is a steel monster about 400 feet long. There’s three decks, with cabins, the galley and mess hall, a few different labs, a movie room, reading room and a weight room with white padded walls. It’s all very “Life Aquatic“, if you get the reference. [those that don’t follow the link its a crazy movie – John]

We have been in transit for the past three days, getting our computers and systems up and running. We arrive at our first deployment spot tomorrow morning at 5:30 am. That is when we’ll put our first ocean bottom seismometer (OBS) down. The OBS itself is a sphere about 16 inches in diameter made of inch thick glass–these suckers are heavy! It’s vacuum sealed with the instrumentation inside and attached to an anchor. When we are done with the survey, the sphere is timed to detach from the anchor and it’ll float to the surface of the water. Our boat will pull up alongside it and we’ll scoop it out with a net and crane.

woke up today at 3am to get ready for my first watch. We definitely have the worst seas that we have had so far. We are definitely pitching and rolling out here! We deployed our first OBS at 5am and are doing about 1 instrument/hr for the next 24 hours.

Those snippets are from various posts on the blog. Another from earlier:

But there is recent good news: that lone female professor (who is an amazing researcher and is highly respected in the field, chairs many committees both nationally and within the department and was president of the Geological Society of America in the 90’s) has been named the new department chair. I think this move is important in encouraging talented women scientists to apply for positions within the department and shows dedication on the part of the higher-ups to highlighting ‘diversity’ as a priority.

Related: Giant Star Fish and More in AntarcticaBeloit College: Girls and Women in ScienceA Career in Computer ProgrammingDiversity in Science and EngineeringSo, You Want to be an Astrophysicist?Dr. Tara Smith

Easier Way to Make Coal Cleaner

MIT has an Energy “Manhattan project”. The USA has a huge amount of coal, if we ever can figure out how to make it clean that will be a huge benefit (though I have my doubts we can really make it clean enough). easier way to make coal cleaner

“Our approach — ‘partial capture’ — can get CO2 emissions from coal-burning plants down to emissions levels of natural gas power plants,” said Ashleigh Hildebrand, a graduate student in chemical engineering and the Technology and Policy Program. “Policies such as California’s Emissions Performance Standards could be met by coal plants using partial capture rather than having to rely solely on natural gas, which is increasingly imported and subject to high and volatile prices.”

The researchers conclude that as a near-term measure, partial capture looks promising. New coal plants with lower CO2 emissions would generate much-needed electricity while also demonstrating carbon capture and providing a setting for testing CO2 storage — steps that will accelerate the large-scale deployment of full capture in the future.

Related: Solar Thermal in Desert, to Beat Coal by 2020Electricity SavingsWind Power Provided Over 1% of Global Electricity in 2007Australian Coal Mining Caused Earthquakes

How Bleach Kills Bacteria

Developed more than 200 years ago and found in households around the world, chlorine bleach is among the most widely used disinfectants, yet scientists never have understood exactly how the familiar product kills bacteria. In fact, Hypochlorite, the active ingredient of household bleach, attacks essential bacterial proteins, ultimately killing the bugs.

“As so often happens in science, we did not set out to address this question,” said Jakob, an associate professor of molecular, cellular and developmental biology. “But when we stumbled on the answer midway through a different project, we were all very excited.”

Jakob and her team were studying a bacterial protein known as heat shock protein 33 (Hsp33), which is classified as a molecular chaperone. The main job of chaperones is to protect proteins from unfavorable interactions, a function that’s particularly important when cells are under conditions of stress, such as the high temperatures that result from fever.

“At high temperatures, proteins begin to lose their three-dimensional molecular structure and start to clump together and form large, insoluble aggregates, just like when you boil an egg,” said lead author Jeannette Winter, who was a postdoctoral fellow in Jakob’s lab. And like eggs, which once boiled never turn liquid again, aggregated proteins usually remain insoluble, and the stressed cells eventually die.

Jakob and her research team figured out that bleach and high temperatures have very similar effects on proteins. Just like heat, the hypochlorite in bleach causes proteins to lose their structure and form large aggregates.

These findings are not only important for understanding how bleach keeps our kitchen countertops sanitary, but they may lead to insights into how we fight off bacterial infections. Our own immune cells produce significant amounts of hypochlorite as a first line of defense to kill invading microorganisms. Unfortunately, hypochlorite damages not just bacterial cells, but ours as well. It is the uncontrolled production of hypochlorite acid that is thought to cause tissue damage at sites of chronic inflammation.

How did studying the protein Hsp33 lead to the bleach discovery? The researchers learned that hypochlorite, rather than damaging Hsp33 as it does most proteins, actually revs up the molecular chaperone. When bacteria encounter the disinfectant, Hsp33 jumps into action to protect bacterial proteins against bleach-induced aggregation.

“With Hsp33, bacteria have evolved a very clever system that directly senses the insult, responds to it and increases the bacteria’s resistance to bleach,” Jakob said.

Related: University of Michigan Press releaseHow do antibiotics kill bacteria?NPR podcast on the storyWhy ‘Licking Your Wounds’ WorksResearchers Learn What Sparks Plant Growth