Author Archives: curiouscat

How Computers Boot Up

How Computers Boot Up

Things start rolling when you press the power button on the computer (no! do tell!). Once the motherboard is powered up it initializes its own firmware – the chipset and other tidbits – and tries to get the CPU running. If things fail at this point (e.g., the CPU is busted or missing) then you will likely have a system that looks completely dead except for rotating fans. A few motherboards manage to emit beeps for an absent or faulty CPU, but the zombie-with-fans state is the most common scenario based on my experience. Sometimes USB or other devices can cause this to happen: unplugging all non-essential devices is a possible cure for a system that was working and suddenly appears dead like this. You can then single out the culprit device by elimination.

If all is well the CPU starts running. In a multi-processor or multi-core system one CPU is dynamically chosen to be the bootstrap processor (BSP) that runs all of the BIOS and kernel initialization code. The remaining processors, called application processors (AP) at this point, remain halted until later on when they are explicitly activated by the kernel. Intel CPUs have been evolving over the years but they’re fully backwards compatible, so modern CPUs can behave like the original 1978 Intel 8086, which is exactly what they do after power up. In this primitive power up state the processor is in real mode with memory paging disabled. This is like ancient MS-DOS where only 1 MB of memory can be addressed and any code can write to any place in memory – there’s no notion of protection or privilege.

Related: Harvard Course on Understanding Computers and the InternetProgramming RubyBabbage Difference Engine In Lego

Video Cat Cam

I first wrote about the Cool Cat Cam about a year ago. Next, I interviewed the cat cam engineer. And
a few months ago I posted some photos by Fritz the Cat. Now enjoy some video catcat webcasts: Fritz in Aktion mit Catcam mit MusikCatcam Smaka takes photos/Video!Cat wears spy camera, makes filmMr. Lee CatCam im MDR Aussenseiter-Spitzenreiter And then order your cat cam.

Shaw Laureates 2008

Image of the Shaw Prize Medal

The Shaw Prize awards $1 million in each of 3 areas: Astronomy; Life Science and Medicine; and Mathematical Sciences. The award was established in 2002 by Run Run Shaw who was born in China and made his money in the movie industry. The prize is administered in Hong Kong and awards those “who have achieved significant breakthrough in academic and scientific research or application and whose work has resulted in a positive and profound impact on mankind.” The 2008 Shaw Laureates have been selected.

Astronomy
Professor Reinhard Genzel, Managing Director of the Max Planck Institute for Extraterrestrial Physics, in recognition of his outstanding contribution in demonstrating that the Milky Way contains a supermassive black hole at its centre.

In 1969, Donald Lynden-Bell and Martin Rees suggested that the Milky Way might contain a supermassive black hole. But evidence for such an object was lacking at the time because the centre of the Milky Way is obscured by interstellar dust, and was detected only as a relatively faint radio source. Reinhard Genzel obtained compelling evidence for this conjecture by developing state-of-the-art astronomical instruments and carrying out a persistent programme of observing our Galactic Centre for many years, which ultimately led to the discovery of a black hole with a mass a few million times that of the Sun, in the centre of the Milky Way.

Supermassive black holes are now recognized to account for the luminous sources seen at the nuclei of galaxies and to play a fundamental role in the formation of galaxies.

Mathematical Sciences
Vladimir Arnold, together with Andrei Kolmogorov and Jurgen Moser, made fundamental contributions to the study of stability in dynamical systems, exemplified by the motion of the planets round the sun. This work laid the foundation for all subsequent developments right up to the present time.

Arnold also produced extremely fruitful ideas, relating classical mechanics to questions of topology. This includes the famous Arnold Conjecture which was only recently solved.

In classical hydrodynamics the basic equations of an ideal fluid were derived by Euler in 1757 and major steps towards understanding them were taken by Helmholtz in 1858, and Kelvin in 1869. The next significant breakthrough was made by Arnold a century later and this has provided the basis for more recent work.

Ludwig Faddeev has made many important contributions to quantum physics. Together with Boris Popov he showed the right way to quantize the famous non-Abelian theory which underlies all contemporary work on sub-atomic physics. This led in particular to the work of ”²t Hooft and Veltman which was recognized by the Nobel Prize for Physics of 1999.
Continue reading

Plastic Balls for the Resevoir

photo of Los Angeles resevoir

This photo looks like a April fools joke but I think it is real. Los Angeles Drops 400,000 Balls in Reservoir to Fight Suspected Carcinogen

So why deploy these balls — which are typically used by airports to prevent bird congregation on runways — in particular? Some of the other alternatives, such as a large tarp or metal cover, were considered too costly or impractical. The balls, on the other hand, are (relatively) cheap — costing 40 cents each — and are safe for drinking water; black is also the only color able to deflect UV rays.

The DWP has ordered 6.5 million of these balls, 3 million of which it plans on using to blanket the Ivanhoe and Elysian reservoirs. So, yeah, this probably isn’t the best solution for the city’s water woes but, given the circumstances, maybe the only “realistic” option in the short-term.

Los Angeles Department of Water and Power drops 400,000 balls onto Ivanhoe Reservoir:

The water needs to be shaded because when sunlight mixes with the bromide and chlorine in Ivanhoe’s water, the carcinogen bromate forms, said Pankaj Parekh, DWP’s director for water quality compliance. Bromide is naturally present in groundwater and chlorine is used to kill bacteria, he said, but sunlight is the final ingredient in the potentially harmful mix.

Photo by (Irfan Khan / Los Angeles Times)

Call me a bit skeptical. Adding a huge number of plastic balls to a water supply in order to try and prevent a chemical reaction caused by added chemicals and sunlight seems a bit crazy to me. But who know maybe it is a good idea.

Related: Cheap Drinking Water From SeawaterEngineering A Cleaner RiverBoiling Water And Plastic Spikes Bisphenol A LevelsBottled Water Waste

Bacteria Evolutionary Shift Seen in the Lab

Bacteria make major evolutionary shift in the lab

A major evolutionary innovation has unfurled right in front of researchers’ eyes. It’s the first time evolution has been caught in the act of making such a rare and complex new trait. And because the species in question is a bacterium, scientists have been able to replay history to show how this evolutionary novelty grew from the accumulation of unpredictable, chance events.

sometime around the 31,500th generation, something dramatic happened in just one of the populations – the bacteria suddenly acquired the ability to metabolise citrate, a second nutrient in their culture medium that E. coli normally cannot use. Indeed, the inability to use citrate is one of the traits by which bacteriologists distinguish E. coli from other species.

The replays showed that even when he looked at trillions of cells, only the original population re-evolved Cit+ – and only when he started the replay from generation 20,000 or greater. Something, he concluded, must have happened around generation 20,000 that laid the groundwork for Cit+ to later evolve.

Lenski and his colleagues are now working to identify just what that earlier change was, and how it made the Cit+ mutation possible more than 10,000 generations later.

Related: People Have More Bacterial Cells than Human CellsUnderstanding the Evolution of Human Beings by CountryE. Coli Individuality

Big Drug Research and Development on Campus

Big Drug R&D on Campus

Merck and Harvard just signed an agreement to develop treatments for the bone disease osteoporosis. On Apr. 25 rival Pfizer (PFE) invested $14 million in an alliance with four universities to study diabetes and obesity.

Drugmakers are counting on these deals to solve a persistent problem: underperforming product pipelines. Merck, Pfizer, and others have been losing sales of one blockbuster drug after another as patents expire and competitors charge in with generics. Big drug companies have fought back by spending more on research, yet the number of new medicines approved each year is falling. In the last week of April alone, the U.S. Food & Drug Administration rejected two of Merck’s experimental drugs, prompting the company to lay off 1,200 salespeople.

Past deals between industry and academia have been hampered by patent disputes and tussles over publication rights, as companies tried to thwart academics who want to share their discoveries with colleagues around the world. So now the companies have devised policies allowing their Ivory Tower partners to patent and publish their discoveries, even as they draw the professors more deeply into corporate affairs.

Funding university activities this way can lead to conflicts and problems but realistically huge amounts of funding are entangled with possible conflicts of interest. The biggest concern I is that universities will bow to the almighty dollar instead of their missions. And inadequate oversight can damage their credibility (not one failure, most likely, but if a pattern emerges). For example: Researchers Fail to Reveal Full Drug Pay (“The Harvard group’s consulting arrangements with drug makers were already controversial because of the researchers’ advocacy of unapproved uses of psychiatric medicines in children.”). Then find out the companies were paying them well, the professors failed to disclose that and the advocacy is rightfully questioned.

Related: From Ghost Writing to Ghost Management in Medical JournalsFunding Medical ResearchMedical Study Integrity (or Lack Thereof)Marketing Drugs

Pax Scientific

Nature Gave Him a Blueprint, but Not Overnight Success

Mr. Harman is a practitioner of biomimicry, a growing movement of the industrial-design field. Eleven years ago, he established Pax Scientific to commercialize his ideas, thinking that it would take only a couple of years to convince companies that they could increase efficiency, lower noise or create entirely new categories of products by following his approach.

His radical ideas have so far found a cautious reception in the aircraft, air- conditioning, boating, pump and wind turbine industries. Mr. Harman’s experience is not unusual. Rather than beating a path to the door of mousetrap designers, the world seems to actively avoid them.

Even in fields such as the computer industry, which celebrates innovation, systemic change can be glacial.

In another hopeful sign, a world that long ignored energy efficiency is suddenly thinking of nothing else. “We tried for years to promote energy conservation, and we couldn’t find one who was interested,” he said. “Now the world has done a U-turn.”

Yet another example that new knowledge is not enough. It takes much longer for good ideas to be put into practice than seems reasonable (until you get your head around the idea it takes a fair amount of time for new ideas to be adopted).

One positive aspect of this reality is that if you can take advantage of new ideas before others you can gain an advantage. It isn’t necessarily true that just because now everyone knows about some new idea that you have no opportunity to use the knowledge before others.

Related: The Future is EngineeringEngineering the Boarding of AirplanesReduce Computer Waste100 Innovations for 2006Innovation at GoogleEducational Institutions Economic Impact

Big Fat Lie

cover of diet delusion

Big fat lie

‘I got actively attacked, but I guess I had to be,’ Taubes says. ‘What are the chances of writing an article that says the entire medical establishment is wrong, and them going, ” Good point, thank you, Gary. Can we give you an award?” When people challenge the establishment, 99.9 per cent of the time they are wrong. If I was writing about me, I’d begin from the assumption that I am both wrong and a quack.’

At least he is right on this. You challenge the accepted scientific understanding and this is what will happen. But if the evidence is there scientists will be won over by the evidence over time.

‘Reading the research was a reawakening for me,’ he says. ‘I did all the things that the rest of us did. I ate a low-fat diet, went to the gym and was getting heavier anyway. But once you flip your way of thinking about it, it seems so absurd: the idea that what you put in minus what you expend equals how fat you are. Our bodies don’t work like a car. We are not thermodynamic black boxes; we are biological organisms and we have evolved complex systems of hormones and enzymes and proteins. That’s how we are regulated.’

The obesity epidemic began in America during the late 1970s, which is also when the low-fat, high-carb diet-and-exercise revolution began. ‘You have a starting point,’ says Taubes. ‘The question is what is causing it? Then I realised that we were first told to eat less fat in the late 1970s, and, if you eat less fat, you start to eat more carbohydrates – it’s a trade-off.’

The whole healthy eating debate is sure not easy to figure out. But I think some things are clear. Eating too many calories and not exercising enough are problems. And it also makes sense that it is not only the number of calories that matter but what type. We are biological beings and how we process food is not just by a count of the calories. It seems the evidence of bad effects of too much carbohydrates is growing.

It also makes perfect sense that our bodies evolved to store energy for worse times (and some of us have bodies better at doing that). Now we are in a new environment where (at least for many people alive today) finding enough calories is not going to be a problem so it would be nice if we could tell our bodies to get less efficient at storing fat for bad times ahead. But we can’t so we need to take actions to remain healthy given the how our body reacts to what we eat and do. And it seems one of those actions might mean we have to eat less than we might want to.

Related: The Diet Delusion by Gary Taubes – Eat food. Not too much. Mostly plants.Obesity Epidemic Explained, Kind OfDon’t Eat What Doesn’t RotGood Calories, Bad Calories by Gary Taubes – Energy Efficiency of DigestionAnother Strike Against Cola

Why did China’s Scientific Innovation Stop?

Why did China’s scientific innovation, once so advanced, suddenly collapse

By the time Joseph Needham died in 1995, he had published 17 volumes of his Science and Civilisation in China series, including several that he wrote entirely on his own.

The Chinese began printing 600 years before Johannes Gutenberg introduced the technique in Germany. They built the first chain drive 700 years before the Europeans. And they made use of a magnetic compass at least a century before the first reference to it appeared elsewhere. So why, in the middle of the 15th century, did this advanced civilisation suddenly cease its spectacular progress?

Needham never fully worked out why China’s inventiveness dried up. Other academics have made their own suggestions: the stultifying pursuit of bureaucratic rank in the Middle Kingdom and the absence of a mercantile class to foster competition and self-improvement; the sheer size of China compared with the smaller states of Europe whose fierce rivalries fostered technological competition; its totalitarianism.

Related: Science and Engineering in PoliticsEconomic Benefits from EngineeringChinese Engineering Innovation PlanBest Research University Rankings (2007)