Author Archives: curiouscat

The Information: A History, a Theory, a Flood by James Gleick

book cover image of The Information

James Gleick is a great science writer. I remember first reading his book, Chaos, which I loved. He continues to write engaging and entertaining books on science. His 2011 release The Information: A History, a Theory, a Flood, is now available in paperback.

From the invention of scripts and alphabets to the long-misunderstood talking drums of Africa, Gleick tells the story of information technologies that changed the very nature of human consciousness. Gleick provides portraits of the key figures contributing to the inexorable development of our modern understanding of information: Charles Babbage, the idiosyncratic inventor of the first great mechanical computer; Ada Byron, the brilliant and doomed daughter of the poet, who became the first true programmer; pivotal figures like Samuel Morse and Alan Turing; and Claude Shannon, the creator of information theory itself.

And now the information age arrives. The Information is the story of how we got here and where we are heading.

Related: science booksWhat Dogs Reveal About EvolutionMicrocosm by Carl ZimmerThe Last Lecture Book

Breakfast with Cheetahs, Lions and Gazelles

Breakfast with cheetahs

For ten days I’ll be touring wildlife camps in Namibia and Botswana, accompanying researchers as they gather data on big cats, black rhinos, and elephants. Ecotourism – trips where travelers help preserve the communities they visit – is the fastest-growing segment of the tourism industry. A growing number of small U.S. travel firms have found their niche creating trips that combine some element of giving back with comfortable accommodations that don’t stress the environment.

One company is Classic Africa, which arranges small group trips to wildlife camps in Botswana, Namibia, South Africa, Zambia, and Zimbabwe. The firm was founded by Margaret and Pierre Faber, who provide custom trips for about 500 clients a year

I have twice gone on safaris in East Africa (photos from my Kenya safari). They have been absolutely wonderful experiences getting to see vast expanses of natural wildlife is like nothing else I have done. They are costly but if you can afford it they really are quite amazing. While the TV shows exploring these location don’t equal a visit they are pretty great also.

Related: Water Buffaloes, Lions and Crocodiles Oh MyPhotos of Rare Saharan Cheetah, Sand Cat and Other WildlifeCheetahs Released into the WildLeopard Bests Crocodile

Exploring Eukaryotic Cells

This webcast is packed with information on the makeup and function of eukaryotic cells, which are the type of cells found in animals. It is part of a interesting series of science webcasts by Crash Course. The webcast style might be a bit too hyperactive and flippant for some but the content is quite interesting and the videos they are are of similar style and quality so if you like this one you can subscribe to their channel. They offer quite a few webcasts on science but they also offer webcasts on history.

Related: Plants, Unikonts, Excavates and SARsHow Cells AgeMidichloria mitochondrii

Bacteriophages Enter Bacteria Using an Iron Tipped Spike

Bacteria-Killing Viruses Wield an Iron Spike

Forget needles in haystacks. Try finding the tip of a needle in a virus. Scientists have long known that a group of viruses called bacteriophages have a knack for infiltrating bacteria and that some begin their attack with a protein spike. But the tip of this spike is so small that no one knew what it was made of or exactly how it worked. Now a team of researchers has found a single iron atom at the head of the spike, a discovery that suggests phages enter bacteria in a different way than surmised.

Wherever there are bacteria you will find bacteriophages; digestive tracts, contaminated water, and feces are usually a good start. These viruses begin their dirty work by drilling into the outer membrane of bacteria. Once completely through all of a bug’s defenses, the phages inject their DNA, which essentially turns the bacterium into phage-producing factories. Eventually, the microbes become filled with so many viruses that they burst, releasing a new horde of phages into the environment.

Bacteriophages are amazing. It is so interesting to learn about amazingly creative solutions that have evolved over time. Real-life science is not easy to match with fiction that springs from our imaginations.

Related: Bacteriophages: The Most Common Life-Like Form on EarthViruses Eating BacteriaWhere Bacteria Get Their Genes

How Bee Hives Make Decisions

The Secret Life of Bees by Carl Zimmer

The decision-making power of honeybees is a prime example of what scientists call swarm intelligence. Clouds of locusts, schools of fish, flocks of birds and colonies of termites display it as well. And in the field of swarm intelligence, Seeley is a towering figure. For 40 years he has come up with experiments that have allowed him to decipher the rules honeybees use for their collective decision-making. “No one has reached the level of experimentation and ingenuity of Tom Seeley,” says Edward O. Wilson of Harvard University.

Enthusiasm translates into attention. An enthusiastic scout will inspire more bees to go check out her site. And when the second-wave scouts return, they persuade more scouts to investigate the better site.

The second principle is flexibility. Once a scout finds a site, she travels back and forth from site to hive. Each time she returns, she dances to win over other scouts. But the number of dance repetitions declines, until she stops dancing altogether. Seeley and his colleagues found that honeybees that visit good sites keep dancing for more trips than honeybees from mediocre ones.

This decaying dance allows a swarm to avoid getting stuck in a bad decision. Even when a mediocre site has attracted a lot of scouts, a single scout returning from a better one can cause the hive to change its collective mind.

“Bees are to hives as neurons are to brains,” says Jeffrey Schall, a neuroscientist at Vanderbilt University. Neurons use some of the same tricks honeybees use to come to decisions. A single visual neuron is like a single scout. It reports about a tiny patch of what we see, just as a scout dances for a single site. Different neurons may give us conflicting ideas about what we’re actually seeing, but we have to quickly choose between the alternatives. That red blob seen from the corner of your eye may be a stop sign, or it may be a car barreling down the street.

To make the right choice, our neurons hold a competition, and different coalitions recruit more neurons to their interpretation of reality, much as scouts recruit more bees

Very cool stuff.

Related: Honeybees Warn Others of RisksWasps Used to Detect ExplosivesStudy of the Colony Collapse Disorder Continues as Bee Colonies Continue to Disappear

Milky Way May Have 100,000 Times More Nomad Planets Than Stars

There may be 100,000 times more “nomad planets” in the Milky Way than stars, according to a new study by researchers at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), a joint institute of Stanford University and the SLAC National Accelerator Laboratory. How amazing is that. Science is so cool. I had no idea this was the case.

If observations confirm the estimate, this new class of celestial objects will affect current theories of planet formation and could change our understanding of the origin and abundance of life.

“If any of these nomad planets are big enough to have a thick atmosphere, they could have trapped enough heat for bacterial life to exist,” said Louis Strigari, leader of the team that reported the result in a paper: Nomads of the Galaxy. Although nomad planets don’t bask in the warmth of a star, they may generate heat through internal radioactive decay and tectonic activity.

Searches over the past two decades have identified more than 500 planets outside our solar system, almost all of which orbit stars. Last year, researchers detected about a dozen nomad planets, using a technique called gravitational microlensing, which looks for stars whose light is momentarily refocused by the gravity of passing planets.

The research produced evidence that roughly two nomads exist for every typical, so-called main-sequence star in our galaxy. The new study estimates that nomads may be up to 50,000 times more common than that.

To arrive at what Strigari himself called “an astronomical number,” the KIPAC team took into account the known gravitational pull of the Milky Way galaxy, the amount of matter available to make such objects and how that matter might divvy itself up into objects ranging from the size of Pluto to larger than Jupiter. Not an easy task, considering no one is quite sure how these bodies form. According to Strigari, some were probably ejected from solar systems, but research indicates that not all of them could have formed in that fashion.

“To paraphrase Dorothy from The Wizard of Oz, if correct, this extrapolation implies that we are not in Kansas anymore, and in fact we never were in Kansas,” said Alan Boss of the Carnegie Institution for Science, author of The Crowded Universe: The Search for Living Planets, who was not involved in the research. “The universe is riddled with unseen planetary-mass objects that we are just now able to detect.”

A good count, especially of the smaller objects, will have to wait for the next generation of big survey telescopes, especially the space-based Wide-Field Infrared Survey Telescope and the ground-based Large Synoptic Survey Telescope, both set to begin operation in the early 2020s.

A confirmation of the estimate could lend credence to another possibility mentioned in the paper – that as nomad planets roam their starry pastures, collisions could scatter their microbial flocks to seed life elsewhere.

Additional authors included KIPAC member Matteo Barnabè and affiliate KIPAC member Philip Marshall of Oxford University. The research was supported by NASA, the National Science Foundation and the Royal Astronomical Society.

Related: full press releaseAstronomers Find a Planet Denser Than LeadHot Ice PlanetNASA’s Mars Curiosity RoverPlanet, Less Dense Than Cork, Is Discovered

Potential Antibiotic Alternative to Treat Infection Without Resistance

Researchers at the University of Michigan have found a potential alternative to conventional antibiotics that could fight infection with a reduced risk of antibiotic resistance. Sadly Michigan is another school that is allowing work of those paid for by the citizens of Michigan to be lock away, only due to the wishes of an outdated journal business model instead of supporting open science. The Big Ten seems much more interested in athletic riches than in promoting science. The Big Ten should be ashamed of such anti knowledge behavior and require open science for their schools if they indeed value knowledge.

By using high-throughput screening of a library of small molecules, the team identified a class of compounds that significantly reduced the spread and severity of group A Streptococcus (GAS) bacteria in mice. Their work suggests that the compounds might have therapeutic value in the treatment of strep and similar infections in humans.

“The widespread occurrence of antibiotic resistance among human pathogens is a major public health problem,” said David Ginsburg, a faculty member at LSI, a professor of internal medicine, human genetics, and pediatrics at the U-M Medical School and a Howard Hughes Medical Institute investigator.

Ginsburg led a team that included Scott Larsen, research professor of medicinal chemistry and co-director of the Vahlteich Medicinal Chemistry Core at U-M’s College of Pharmacy, and Hongmin Sun, assistant professor of medicine at the University of Missouri School of Medicine.

Work on this project is continuing at U-M and the University of Missouri, including the preparation of new compounds with improved potency and the filing of patents, Larsen said. Large research schools are also very interested in patents. That is ok, though seems to cloud the pursuit of knowledge too often when too large a focus is on dollars at many schools. But, it seems to put the schools primary focus on dollars; education seems to start to be a minor activity at some of these large schools.

Current antibiotics interfere with critical biological processes in the pathogen to kill it or stop its growth. But at the same time, stronger strains of the harmful bacteria can sometimes resist the treatment and flourish.

An alternate approach is to suppress the virulence of the infection but still allow the bacteria to grow, which means there is no strong selection for strains that are resistant to antibiotics. In a similar experiment at Harvard University, an anti-virulence strategy was successful in protecting mice from cholera.

About 700 million people have symptomatic group A Streptococcus infections around the world each year, and the infection can be fatal. Most doctors prescribe penicillin. The newly identified compounds could work with conventional antibiotics and result in more effective treatment.

Related: full press releaseWhat Happens If the Overuse of Antibiotics Leads to Them No Longer Working?Norway Reduces Infections by Reducing Antibiotic UseNew Family of Antibacterial Agents DiscoveredMany Antibacterial Products May Do More Harm Than GoodAnti-microbial Paint

Sports Science Behind Jeremy Lin’s Breakout Performance

Jeremy Lin’s performance has been amazing. It is always fun to see someone succeed who wasn’t expected to do so well.d Jeremy Lin was waived by two teams and now has lead the Nicks to an amazing performance the last 10 games for the New York Knicks in the NBA. It will be fun to see how it continues.

The video gives a very cursory overview of some of the training Jeremy Lin did between basketball seasons.

A few decades ago training was largely about learning and working on a few fundamentals and playing. In the last few decades the science behind athletics has created a huge change in preparation for sports at high levels, as we have written about previously: Physicist Swimming Revolution, Science of the High Jump, Sports Engineering @ MIT, Engineering A Golf Swing, Static Stretching Decreases Muscle Strength

Numeracy: The Educational Gift That Keeps on Giving

I like numbers. I always have. This is just luck, I think. I see, how helpful it is to have a good understanding of numbers. Failing to develop a facility with numbers results in many bad decisions, it seems to me.

A new article published in closed anti-science way, sadly (so no link), examines how people who are numerate (like literate but for number—understand) process information differently so that they ultimately make more informed decisions. Cancer risks. Investment alternatives. Calories. Numbers are everywhere in daily life, and they figure into all sorts of decisions.

People who are numerate are more comfortable thinking about numbers and are less influenced by other information, says Ellen Peters of Ohio State University (sadly Ohio State allows research by staff paid by them to be unavailable to the public – sad), the author of the new paper. For example, in one of Peters’s studies, students were asked to rate undergraduates who received what looked like different test scores. Numerate people were more likely to see a person who got 74% correct and a person who got 26% incorrect as equivalent, while people who were less numerate thought people were doing better if their score was given in terms of a percent correct.

People make decisions based on this sort of information all the time. For example, “A lot of people take medications,” Peters says. Every drug has benefits and potential risks, and those can be presented in different ways. “You can talk about the 10 percent of the population that gets the side effect or the 90 percent that does not.” How you talk about it will influence how dangerous the drug seems to be, particularly among people who are less numerate.

Other research has shown that only less numerate people respond differently to something that has a 1 in 100 chance of happening than something that has a 1 percent chance of happening. The less numerate see more risk in the 1 in 100 chance—even though these numbers are exactly the same.

“In general, people who are numerate are better able to bring consistent meaning to numbers and to make better decisions,” Peters says. “It suggests that courses in math and statistics may be the educational gift that keeps on giving.”

Related: full press releaseBigger Impact: 15 to 18 mpg or 50 to 100 mpg?Data Doesn’t Lie, But People Can be FooledUnderstanding Data: Simpson’s Paradoxapplied statistics is not about proving a theorem, it’s about being curious about thingsEncouraging Curiosity in KidsDangers of Forgetting the Proxy Nature of DataCompounding is the Most Powerful Force in the Universe

Friday Fun: Exercise Wheels for Dogs and Cats

This would certainly give dogs that don’t have big enough yards to run in some good exercise.

Cats don’t seem to take to the wheels as naturally as a few dogs do. While the wheel is odd no matter what I would also wager the evolution of the animals is at play. Cats are use to stalking animals. You can see that trait play out in the kitten video above (and lots of other similar videos – so while this one is partially the kittens short attention span it also seems common that cats don’t just run for a long time). While dogs are evolved to wear our their prey in log distance chases. I’m sure getting dogs to use a wheel isn’t likely to be super easy but I think it will be easier than getting cats to do so.

Related: Kittens Reminding You to Thank Your MotherFriday Escape Dog FunFriday Cat Fun: Treadmill CatsDog and Duckling Fun