Author Archives: curiouscat

Educating the Biologist of the 21st Century

An Introductory Science Curriculum for 21st Century Biologists by David Botstein (webcast)

At Princeton’s new Lewis-Sigler Institute, Botstein is spearheading an innovative effort at interdisciplinary undergraduate education. Students will take advantage of state of the art laboratories and computers capable of crunching vast amounts of data generated by actual research. Professors will “provide essential fundamental concepts as required, using the just-in-time-principle” – no more of the “learn this now, it will be good for you later” approach, which Botstein likens to hazing. Botstein says there is “lots of overhead in teaching historical and traditional origins” so his students will learn instead “with ideas and technologies of today.” He wants to create a new basic language that will enable his biology students to make sense of the fundamental issues of other disciplines.

Very good look at future of biology education.

Related: MIT Faculty Study Recommends Significant Undergraduate Education ChangesThe Importance of Science EducationWebcast: Engineering Education in the 21st CenturyEducating the Engineer of 2020: NAE Report

High School Students to Intern in Engineering

Pasco high school students to work as interns in engineering

Five area manufacturers announced Tuesday that they will join forces with River Ridge High’s new engineering career academy, which opens in fall 2009, to provide students work opportunities while they are still in school.

“The idea is to start a program of internships starting in the 10th grade,” said Wahnish, who presents the idea to the Florida Engineering Society today.

By the time graduation rolls around, students will have had three six-week apprenticeships and received industry certifications in computer-assisted design and other applications. They also will be ready to go to work or enroll in a university program. Even those who go to work still would attend college at least two days a week.

Related: Engineering Internship OpeningsSummer Jobs for Smart Young MindsToyota Cultivating Engineering TalentInternships Increasingly Popularcareers in science and engineering

Brain Reorganizes As It Learns Math

Brain reorganizes to make room for math

It takes years for children to master the ins and outs of arithmetic. New research indicates that this learning process triggers a large-scale reorganization of brain processes involved in understanding written symbols for various quantities.

The findings support the idea that humans’ ability to match specific quantities with number symbols, a skill required for doing arithmetic, builds on a brain system that is used for estimating approximate quantities. That brain system is seen in many nonhuman animals.

When performing operations with Arabic numerals, young adults, but not school-age children, show pronounced activity in a piece of brain tissue called the left superior temporal gyrus, says Daniel Ansari of the University of Western Ontario in London, Canada. Earlier studies have linked this region to the ability to associate speech sounds with written letters, and musical sounds with written notes. The left superior temporal gyrus is located near the brain’s midpoint, not far from areas linked to speech production and understanding.

In contrast, children solving a numerical task display heightened activity in a frontal-brain area that, in adults, primarily serves other functions.

Related: Brain DevelopmentThe Brain Hides Information From Us To Prevent MistakesHow The Brain Rewires Itselfposts about brain research

Friday Cat Fun #10: Cat and Crow Friends

Very cool, it is amazing what happens in life. And that bird is remarkably patient. Getting, even playfully, ambushed by a cat doesn’t seem like something what would come naturally. At least with polar bears and huskies they both are used to playing rough with their own.

Related: fun with catsBunny and KittensBird Brains: thinking crowsPhotos by Fritz the Catanimal planet on the cat and crow

Appropriate Technology: Self Adjusting Glasses

Self Adjusting Glasses for 1 billion of the world’s poorest see better

What if it were possible, he thought, to make a pair of glasses which, instead of requiring an optician, could be “tuned” by the wearer to correct his or her own vision? Might it be possible to bring affordable spectacles to millions who would never otherwise have them?

More than two decades after posing that question, Josh Silver [a physics professor at Oxford] now feels he has the answer. The British inventor has embarked on a quest that is breathtakingly ambitious, but which he insists is achievable – to offer glasses to a billion of the world’s poorest people by 2020.

Some 30,000 pairs of his spectacles have already been distributed in 15 countries, but to Silver that is very small beer. Within the next year the now-retired professor and his team plan to launch a trial in India which will, they hope, distribute 1 million pairs of glasses. The target, within a few years, is 100 million pairs annually.

Silver has devised a pair of glasses which rely on the principle that the fatter a lens the more powerful it becomes. Inside the device’s tough plastic lenses are two clear circular sacs filled with fluid, each of which is connected to a small syringe attached to either arm of the spectacles.

The wearer adjusts a dial on the syringe to add or reduce amount of fluid in the membrane, thus changing the power of the lens. When the wearer is happy with the strength of each lens the membrane is sealed by twisting a small screw, and the syringes removed. The principle is so simple, the team has discovered, that with very little guidance people are perfectly capable of creating glasses to their own prescription.

Oxford University, at his instigation, has agreed to host a Centre for Vision in the Developing World, which is about to begin working on a World Bank-funded project with scientists from the US, China, Hong Kong and South Africa. “Things are never simple. But I will solve this problem if I can. And I won’t really let people stand in my way.”

Cool. A couple points I would like to make:

1) this professor is making a much bigger difference in the “real world” than most people ever will. The idea that professors are all lost in insignificant “ivory towers” is a very inaccurate view of what really happens.
2) Spending money on this kind of thing seems much more important for the human race than spending trillions to bail out poor moves by bankers, financiers… It sure seems odd that we can’t find a few billion to help out people across the globe that are without basic necessities yet we can find trillions to bail out the actions of few thousand bad actors.

Related: Adaptive EyecareBringing Eye Care to Thousands in IndiaRiver Blindness Worm Develops Resistance to DrugsStrawjet: Invention of the Year (2006)Fixing the World on $2 a DayAppropriate Technology

Making Embryonic Stem Cells

photo of Junying Yuphoto of Junying Yu, an assistant scientist with the University of Wisconsin-Madison by Bryce Richter, 2007.

Holy Grail of stem cell research within reach by Mark Johnson

It was time to test the 14 genes she had selected as the best candidates to reprogram a cell.

Using viruses to deliver the genes, she inserted all 14 at once into human cells. On the morning of July 1, 2006, Yu arrived at the lab and examined the culture dishes. Her eyes focused on a few colonies, each resembling a crowded city viewed from space. They looked like embryonic stem cells.

Cells must pass certain tests. They must multiply for weeks while remaining in their delicate, primitive state. When they are allowed to develop, they must turn into all the other cell types.

Bad things happen. Cells develop too soon. Cells die. There is no “aha!” moment, Thomson has said, only stress. He looked at the colonies and suppressed any excitement. He told Yu, essentially: OK, well get back to me in a couple of weeks.

In the fall of 2006, Yu was preparing to whittle down her list of genes when she fell ill. The pain in her gut was awful. She struggled to eat. Her doctor thought it was a stomach flu. Instead, in late October, Yu’s appendix burst. She was laid up for a month. When she returned to the lab, the problem with the culture medium struck again.

Not until January 2007 was she able to begin narrowing the list of genes. She spent several months testing subsets of them, finally arriving at four. Two, Oct4 and Sox2, were “Yamanaka factors,” the name given to the genes the Japanese scientist had used to reprogram mouse cells. Two, Nanog and Lin28, were not.

Using a virus to deliver the four genes, she reprogrammed a line of fetal cells, then repeated the experiments with more mature cells. Although the process was inefficient, succeeding with only a small fraction of cells, it did work.

Dr. Junying Yu, an American trained scientist who entered the US as a foreign student from China. Which is somewhat ironic given the movement of USA based stem cell researches to China. Great article showing the process of scientific inquiry.

Related: Junying Yu, James Thomson and Shinya Yamanaka (Time people who mattered 2007) – Discovery leaps legal, financial and ethical hurdles facing stem cellsEdinburgh University $115 Million Stem Cell CenterStanford Gets $75 Million for Stem Cell Centerposts relating to Madison, Wisconsin

Scientists Learn More About Spider Evolution

Tangled web of spider evolution

It seems that Attercopus is a missing link, capable of producing silk but not of weaving it. “The thing that had been called the oldest known spider we have now shown is in fact more primitive than a true spider,” Professor Selden told BBC News.

“They’re all microscopic fragments. What you’ve got is a jigsaw puzzle, with half the pieces and no picture on the box lid,” Professor Selden said. “You don’t know what it’s going to be if you haven’t got all the pieces, so having these additional pieces means it changed the idea of what it was.” The finding is important for evolutionary biologists trying to unravel the origin of spider silk.

“The puzzle about silk was this: we knew that it wasn’t used for making webs initially, for catching insects, because there were no flying insects when the earliest spiders were around,” Professor Selden said.

“Here we clearly have a spider-like animal that could produce silk but didn’t yet have these flexible spinnerets for weaving it into webs; we think that this sort of spider would leave a trail of silk as it moved along, using it to find its way back to its burrow.”

Another great example of scientists incorporating new information and adjusting their understanding of what they are studying.

Related: 60 Acre (24 hectare) Spider WebSpider ThreadDinosaur Remains Found with Intact Skin and TissueSecrets of Spider Silk’s Strength

Octopuses Give Eight Thumbs up to HDTV

Octopuses give eight thumbs up for high-def TV

“Octopuses,” Miss Pronk said, “are very smart. I have seen my octopuses open Vegemite jars by unscrewing the lid. They can find their way through mazes to reach food rewards at the end. “And they can learn simple puzzles”, recognising that symbols, such as squares or circles, mean food is available.

When the crab movie was screened “they jetted straight over to the monitor and tried to attack it”, she said, adding that was strong evidence they knew they were watching food.

When the octopus movie was screened some became aggressive while others changed their skin camouflage or “would go and hide in a corner, moving as far away as possible”.

On viewing the swinging bottle, some puffed themselves up, just in case the object was a threat, while others paid no attention.

But significantly, when the experiment was repeated over several days, she found no consistent response from any octopus. Such random responses implied octopuses have no individual personalities.

She suspected previous efforts to show movies to octopuses failed because their sophisticated eyes were too fast for the 24-frame per second format of standard-definition video.

Related: Octopus Juggling Fellow Aquarium OccupantsRed Octopus in Brine Lake Beneath the SeaRandomization in SportsCurious Cat Science Search

Online Education in Science, Engineering and Medicine

The National Academies state that they want to develop websites, podcasts, and printed information featuring the topics in science, engineering, and medicine that concern you the most, and that you’d like to understand better. Great. I am very disappointed in how little great material is available now (from them, and others).

Fill out their survey and hope they hire some people that actually understand the web. I must say the survey seems very lame to me.

The internet provides a fantastic platform for those that have an interest in increasing scientific literacy. But there is still very little great material available. There are a few great resources but there should be a great deal more. The National Academies of Science have a particularly stilted web presence – it is as though the web were just a way to distribute pages for people to print out. Though they are very slowly getting a bit better, adding a small amount of podcasts, for example. While hardly innovative, for them, it is a step into the 21st century, at least.

Some of the good material online: Public Library of ScienceScience BlogsEncyclopedia of LifeThe Naked ScientistsBerkeley Course WebcastsBBC Science NewsMIT OpenCourseWare (though it is very lacking in some ways at least they are trying) – TEDMayo ClinicNobel PrizeSciVee

It seems to me universities with huge endowments (MIT, Harvard, Yale, Standford…), government agencies (NSF, National Academies), museums and professional societies should be doing much more to create great online content. I would increase funding in this area by 5 to 10 times what is currently being dedicated right now, and probably much more would be wise. I believe funding this would be most effective way to spend resources of those organizations on what they say they want to support.

Social Amoeba

Amoebic Morality by Carol Otte

At first their behavior might seem odd; to gather together in the face of starvation surely ought to end in cannibalism or death. Not so, for they are capable of an extraordinary and rare transformation. The amoebas set aside their lives as individuals and join ranks to form a new multicellular entity. Not all the amoebas will survive this cooperative venture, however. Some will sacrifice themselves to help the rest find a new life elsewhere.

These astonishing creatures are Dictyostelium discoideum, and they are a member of the slime mold family. They are also known as social amoebas. Aside from the novelty value of an organism that alternates between unicellular and multicellular existence, D. discoideum is highly useful in several areas of research. Among other things, this organism offers a stellar opportunity to study cell communication, cell differentiation, and the evolution of altruism.

In response to the cAMP distress call, up to one hundred thousand of the amoebas assemble. They first form a tower, which eventually topples over into an oblong blob about two millimeters long. The identical amoebas within this pseudoplasmodium– or slug– begin to differentiate and take on specialized roles.

Another cool example of how life has evolved novel solutions to perpetuate genes.

Related: Thinking Slime MouldsBe Thankful for Marine AlgaeHow Bacteria Nearly Destroyed All Life