Category Archives: Economics

Posts exploring the economic impacts of science and engineering. The value of strong science and engineering practice has many benefits to the economy – directly and indirectly. Many countries are focusing their future economic plans on advancing their scientific, engineering and technology communities and creating environments that support scientists and engineers.

Nobel Laureates Speaking to High School in Japan

Nobel laureates aiming to spur creativity / Shirakawa, Tanaka to give students lecture

Shirakawa became interested in science journalism, and even sat in during lectures offered by the Japan Association of Science and Technology Journalists. He is now enthusiastic about giving lectures to, and teaching, young scientists.

Research is important for scientists, but it is also important that they share their knowledge with the public, and people to better understand the subject, he said.

Shirakawa graduated from the Science and Engineering Department of Tokyo Institute of Technology, where he obtained a doctorate in engineering in 1966.

In 2000, he won the Nobel Prize in Chemistry for the discovery of conductive polymers.

Our previous post, Scientists and Students, discussed having practicing scientists address students. Scientist say they are too busy and do not get credit for such efforts – hopefully these Nobel prize winners can help show how important such direct contact can be.

Related: Science Education in the 21st Centuryblog posts about k-12 science and engineering educationChildrens View of Scientists in the United Kingdom20 Scientists Who Have Helped Shape Our WorldNobel Laureate Discusses Protein Power

Civil Engineers: USA Infrastructure Needs Improvement

Experts warn U.S. is coming apart at the seams by Chuck McCutcheon:

The American Society of Civil Engineers last year graded the nation “D” for its overall infrastructure conditions, estimating that it would take $1.6 trillion over five years to fix the problem.

“I thought [Hurricane] Katrina was a hell of a wake-up call, but people are missing the alarm,” said Casey Dinges, the society’s managing director of external affairs.

It will take much longer than 5 years: there is no way over $300 billion is available each year to catch up. Infrastructure is not an exciting area to invest in but just like skipping preventative maintenance on equipment will cost organizations more in the long run, failing to invest in maintaining the infrastructure will cost more.

“Infrastructure deficiencies will further erode our global competitiveness, but with the federal budget so committed to mandatory spending, it’s unclear how we are going to deal with this challenge as we fall further and further behind in addressing these problems,”

These “grade” evaluations are a bit flaky: what does a D mean for the USA (they define it as “poor” which still doesn’t mean much)? Still, it is clear the ASCE sees a need for improvement. Related: 2005 ASCE reportConcord Coalition

Scientific Innovation and Economic Growth

Reform, Innovation, and Economic Growth by President Levin, Yale University president, speaking at the University of Tokyo:

Performance scores in mathematics, problem solving, science, and reading for Japanese students are significantly ahead of their peers elsewhere; and the Japanese public and private financial commitment to education is also among the strongest. Taken together, the result has been that Japan has one of the best-educated workforces in the world, particularly in science and technology.

The superior education of the labor force and a large and well-trained pool of engineers contributed mightily to Japan’s rapid growth from 1945 to 1990.

In fostering science-based innovation, the United States has drawn upon two national characteristics that have long been a source of advantage: the ready availability of capital and the relative absence of barriers to the formation of new firms. These institutional features help with the rapid translation of science into industrial practice. But the United States government also recognized, in the immediate aftermath of World War II, that public investment was essential to generate steady progress in basic science. Scientific discoveries are the foundation of industrial technology.

A recent study prepared for the National Science Foundation found that 73% of the main science papers cited in industrial patents granted in the U.S. were based on research financed by government or nonprofit agencies and carried out in large part in university laboratories.

Related: The World’s Best Research UniversitiesScience and Engineering in Global EconomicsChina challenges dominance of USA, Europe and JapanThe Future is EngineeringAmerica’s Technology Advantage Slipping

Diplomacy and Science Research

Today more and more locations are becoming viable for world class research and development. Today the following have significant ability: USA, Europe (many countries), Japan, Canada, China, Brazil, Singapore, Israel, India, Korea and Australia (I am sure I have missed some this is just what come to mind as I type this post) and many more are moving in that direction.

The continued increase of viable locations for significant amounts of cutting edge research and development has huge consequences, in many areas. If paths to research and development are blocked in one location (by law, regulation, choice, lack of capital, threat of significant damage to the career of those who would choose such a course…) other locations will step in. In some ways this will be good (see below for an explanation of why this might be so). Promising new ideas will not be stifled due to one roadblock.

But risks of problems will also increase. For example, there are plenty of reasons to want to go carefully in the way of genetically engineered crops. But those seeking a more conservative approach are going to be challenged: countries that are acting conservatively will see other countries jump in, I believe. And even if this didn’t happen significantly in the area of genetically engineered crops, I still believe it will create challenges. The ability to go elsewhere will make those seeking to put constraints in place in a more difficult position than 50 years ago when the options were much more limited (It might be possible to stop significant research just by getting a handful of countries to agree).

Debates of what restrictions to put on science and technology research and development will be a continuing and increasing area of conflict. And the solutions will not be easy. Hopefully we will develop a system of diplomacy that works, but that is much easier said than done. And the United States will have to learn they do not have the power to dictate terms to others. This won’t be an easy thing to accept for many in America. The USA will still have a great deal of influence, due mainly to economic power but that influence is only the ability to influence others and that ability will decline if diplomacy is not improved. Diplomacy may not seem to be a science and engineering area but it is going to be increasingly be a major factor in the progress of science and engineering. Continue reading

The World’s Best Research Universities

Shanghai’s Jiao Tong University produces a ranking of the top universities annually (since 2003). The methodology used focuses on research (publications) and faculty quality (Fields and Nobel awards and citations). While this seems a very simplistic ranking it still provides some interesting data: highlights from the 2006 rankings of Top 500 Universities worldwide include:

Country representation in the top schools:

subscribe to Curious Cat Engineering Blog

location Top 101 % of World
Population
% of World GDP % of top 500
USA 54   4.6%   28.4%  33.4%
United Kingdom 10  0.9   5.1 8.6
Japan   6 2.0 11.2 6.4
Canada   4  0.5   2.4 8.0
The rest of Europe 18 4.4
Australia   2   0.3   1.5 3.2
Israel   1   0.1   0.3 1.4

Update: see our post on 2007 best research universities results

Top 10 schools:

  • Harvard University
  • Cambridge University
  • Stanford University
  • University of California at Berkeley
  • Massachusetts Institute of Technology(MIT)
  • California Institute of Technology
  • Columbia University
  • Princeton University
  • University Chicago
  • Oxford University

Continue reading

Math and Science Challenges for the USA

Panel says U.S. is losing ground in math, science by Bruce Lieberman

The United States may dominate many sectors of science and technology, but other countries are moving rapidly to take its place, said Griffin and other national leaders during the West Coast Competitiveness Summit at the San Diego Air & Space Museum.

The summit was the latest of several meetings designed to explore how the United States can recommit to building an economic future based on scientific and technological innovation.

Numerous studies since the mid-1980s have reported on threats to the nation’s stature in science and technology, and many of them focused on improving education as a key challenge.

MIT’s Energy ‘Manhattan Project’

MIT’s Energy ‘Manhattan Project’ by Mark Anderson:

David Jhirad, a former deputy assistant secretary of energy and current VP for science and research at the World Resources Institute, said no other institution or government anywhere has taken on such an intensive, creative, broad-based, and wide-ranging energy research initiative.

Many of these projects are ongoing and will continue under the Energy Research Council banner. Others, such as a new effort to make cheap ethanol using a biochemical technique called metabolic engineering, apply the expertise of faculty and staff who had never worked on energy problems before.

The council will also hire faculty in fields, such as optimizing energy distribution and transmission, if it finds MIT hasn’t devoted enough resources to them.

Susan Hockfield, Inaugural Address, 16th President of the Massachusetts Institute of Technology:
Continue reading

Science and Engineering in Global Economics

The main point of The Global Race – Is America Still a Contender? by James Schultz is that the United States is too complacent: thinking its past success guarantees future success. I have stated that I believe the economic comparative advantage the USA has enjoyed due to science and technology leadership is almost certain to shrink and we should take steps to slow that decrease. Also see: Engineering Education and Innovation, The Future is Engineering, Engineers and the Economy and The Science Gap and the Economy.

From the article:

The hungry don’t dither, and neither do relatively lean economic adversaries. Worldwide, up-and-comers are integrating economic development with governmental practice, teaming eager, growing-wage, and increasingly skilled workforces with coordinated national policies. If laws get in the way, they are changed; if labor movements demand too much too quickly, they are quashed…

Continue reading

R&D Spending in USA Universities

National Science Foundation, Division of Science Resources Statistics, Academic Research and Development Expenditures: Fiscal Year 2004, NSF 06-323 provides a view of R&D spending at universities in the USA.

Spending over the last 5 years in billions: $30.7 in 2000; 32.8; 36.4; 40.1 and $42.9 in 2004. For 2004 the funding source for the spending was:

Federal Government: $27.4
State and Local: 2.8
Industry: 2.1
Institutional: 7.8
All other: 2.8

Also for 2004 of the total $32.3 billion was for basic research and $10.6 billion for applied research and development.

The schools spending the largest amounts on R&D in 2004 and the spending in millions:

Johns Hopkins $1,375
UCLA 773
Univ of Michigan (all) 769
UW – Madison 764
UC – San Francisco 728
Univ Washington 714
UC – San Diego 709
Stanford 671

The publication includes a huge amount of data on current spending and historical spending.

Economic Benefits and Science Higher Education

University Tries to Make Texas a Science Force:

In an effort to make Texas a magnet for scientific and medical research, the University of Texas is planning a $2.5 billion program to expand research and teaching in the sciences, including medicine and technology.

The initiative would be one of the largest investments in expansion by a public university, university officials said.

Related: How to cultivate Your Own Silicon ValleyUniversities Focus on Economic BenefitsEconomic Benefits of EngineeringSingapore Supporting Science Researchers$1 Billion for Indian Research University