Category Archives: Economics

Posts exploring the economic impacts of science and engineering. The value of strong science and engineering practice has many benefits to the economy – directly and indirectly. Many countries are focusing their future economic plans on advancing their scientific, engineering and technology communities and creating environments that support scientists and engineers.

FreeWave’s Data Radios Bring Employee Bonuses

It is easy with the existing economic news to think things are bleak everywhere. But even within the current climate companies find success. Founded in 1993, FreeWave Technologies is a world leader in the innovative design and manufacture of ISM Band radios and wireless data solutions. Their data-transmitting radios span the globe from the Middle East to Mount Everest; from the Amazon Rainforest to Antarctica to New York. They are used by defense contractors, oil and gas companies, city and county municipalities and industrial manufacturers.

photo of Hedy LamarrHedy Lamarr from the trailer for the film Boom Town, 1940

FreeWave’s data radios are based on Frequency Hopping Spread Spectrum Technology. Spread Spectrum was originally created for the U.S. Navy during World War II to prevent the Germans from “jamming” American radio transmissions for radio-guided torpedoes. The technology was invented by Hedy Lamar, a famous movie star of the 1940’s. The original radios contained a roll of paper slotted like a player piano to cause channel switching. Hedy’s close friend, Inventor/Musician George Antheil, designed the first successful synchronization device that brought Hedy’s idea to fruition. In 1941, Hedy and George were granted a U.S. patent for the first “Secret Communications System.” The original system used merely 88 frequencies. Today, the switching is controlled in embedded firmware code that enables a radio to change frequencies hundreds of times per second and use more than 100 channels.

Engineering these radios is something the company takes quite seriously. And hiring the best talent is part of this philosophy. Every single employee considers it his/her job to ensure that customers receive top-notch service seven days a week. This extends all the way through the organization up to senior management. FreeWave is so dedicated to making its customers front and center that it provides 24-hour technical support – even rotating senior management to be on call at nights and on the weekends.

The privately held company is based in Boulder, Colorado, the company offers network design, pre-installation engineering services and manufactures its own radios (manufacturing them in Boulder).

FreeWave’s increase in revenues of 112 percent from 2003 to 2007. The company has paid this bonus every six months since the first one was paid in July 1995. Over the past year, FreeWave has invested in expanding its facility to accommodate more staff; growing its manufacturing space and capabilities; dedicating more resources and technology to its product development; increasing its customer and partner training; and, investing in marketing and sales.
Continue reading

Eric Schmidt on Google, Education and Economics


Eric Schmidt, March 6th, 2009 interview by Charlie Rose:

  • “From our perspective, I think the YouTube acquisition and the Doubleclick acquisition, which are the two large acquisitions we did last year, and the year before, have been phenomenally successful.”
  • He also mentioned the idea of teachers today creating online hubs of information on educational areas, as well as lesson plans. See our Education Resources for Science and Engineering
  • And Flu Trends
  • “We needed the stimulus package, because the stimulus package had, among other things, $20 billion for science and education funding… Real wealth is created by businesses, not by financial engineering, and by businesses that provide new products that solve new problems.”
  • Why do you assume the best students in the world are going to come to America? “Because they choose to come here right now… That is a brilliant [actually not brilliant at all] strategy take the best people hire them in American universities and then kick them out” It happens. “Its shocking.” It happens. “I know we are fighting against it.” “We America remain, by far the place of choice for education, particularly higher education.
  • Technologists as a group tend to be more analytical, more data driven, more personally liberal (more willing to tolerate the differences among people, more global in their focus… [technologists] as a group believe you can literally change the world from technology.”

Related: Eric Schmidt on Management at GoogleEric Schmidt Podcast on Google Innovation and EntrepreneurshipLarry Page and Sergey Brin InterviewMarissa Mayer Webcast on Google InnovationLarry Page on How to Change the World

Canadian Oil Sands

Canadian oil sands sitePhotograph by Peter Essick, National Geographic

Canadian Oil Boom

To extract each barrel of oil from a surface mine, the industry must first cut down the forest, then remove an average of two tons of peat and dirt that lie above the oil sands layer, then two tons of the sand itself. It must heat several barrels of water to strip the bitumen from the sand and upgrade it, and afterward it discharges contaminated water into tailings ponds like the one near Mildred Lake. They now cover around 50 square miles.

The Alberta government estimates that the province’s three main oil sands deposits, of which the Athabasca one is the largest, contain 173 billion barrels of oil that are economically recoverable today. “The size of that, on the world stage—it’s massive,” says Rick George, CEO of Suncor, which opened the first mine on the Athabasca River in 1967. In 2003, when the Oil & Gas Journal added the Alberta oil sands to its list of proven reserves, it immediately propelled Canada to second place, behind Saudi Arabia, among oil-producing nations. The proven reserves in the oil sands are eight times those of the entire U.S. “And that number will do nothing but go up,” says George. The Alberta Energy Resources and Conservation Board estimates that more than 300 billion barrels may one day be recoverable from the oil sands; it puts the total size of the deposit at 1.7 trillion barrels.

But the free market does not consider the effects of the mines on the river or the forest, or on the people who live there, unless it is forced to. Nor, left to itself, will it consider the effects of the oil sands on climate. Jim Boucher has collaborated with the oil sands industry in order to build a new economy for his people, to replace the one they lost, to provide a new future for kids who no longer hunt ptarmigan in the moonlight. But he is aware of the trade-offs. “It’s a struggle to balance the needs of today and tomorrow when you look at the environment we’re going to live in,” he says. In northern Alberta the question of how to strike that balance has been left to the free market, and its answer has been to forget about tomorrow. Tomorrow is not its job.

This is a good article by National Geographic. We need energy. We also need to protect the environment. The trade-offs societies decide to make are often not easy. But open discussion of the issues is important.

Related: Wind Power Provided Over 1% of Global Electricity in 200759 MPG Toyota iQ DieselSolar Thermal in Desert, to Beat Coal by 2020Bigger Impact: 15 to 18 mpg or 50 to 100 mpg?

Billions for Science in Stimulus Bill

Science wins big in US economic plan

Democratic leadership in the US House of Representatives unveiled on Thursday an $825 billion economic stimulus bill that includes tens of billions of dollars in new funding for basic research, science infrastructure and clean-energy initiatives.

House appropriators would pump $3 billion into the National Science Foundation (NSF), $2 billion into the National Institutes of Health (NIH), $1.9 billion into the Department of Energy and $1.5 billion into university research facilities. Much of that money would be directed toward science infrastructure like renovating buildings or laboratories, but the NSF and NIH would receive $2 billion and $1.5 billion respectively that could be used to pay for thousands of basic research grants that have already been approved but for which there was previously not enough money.

It will be interesting to see how this plays out. And short term spikes in funding are problematic for numerous reasons. But I have long argued for the value of investing in science and engineering excellence for long term economic benefit. I am worried the government will fail to provide adequate strategic thought to investments.

Today is Martin Luther King Day in the USA: Watch the entire I Have a Dream Speech.

Related: Science and Engineering in Global EconomicsEngineering the Future EconomyThe Future is EngineeringChina and USA Basic Science ResearchTapping America’s Potential

Appropriate Technology: Self Adjusting Glasses

Self Adjusting Glasses for 1 billion of the world’s poorest see better

What if it were possible, he thought, to make a pair of glasses which, instead of requiring an optician, could be “tuned” by the wearer to correct his or her own vision? Might it be possible to bring affordable spectacles to millions who would never otherwise have them?

More than two decades after posing that question, Josh Silver [a physics professor at Oxford] now feels he has the answer. The British inventor has embarked on a quest that is breathtakingly ambitious, but which he insists is achievable – to offer glasses to a billion of the world’s poorest people by 2020.

Some 30,000 pairs of his spectacles have already been distributed in 15 countries, but to Silver that is very small beer. Within the next year the now-retired professor and his team plan to launch a trial in India which will, they hope, distribute 1 million pairs of glasses. The target, within a few years, is 100 million pairs annually.

Silver has devised a pair of glasses which rely on the principle that the fatter a lens the more powerful it becomes. Inside the device’s tough plastic lenses are two clear circular sacs filled with fluid, each of which is connected to a small syringe attached to either arm of the spectacles.

The wearer adjusts a dial on the syringe to add or reduce amount of fluid in the membrane, thus changing the power of the lens. When the wearer is happy with the strength of each lens the membrane is sealed by twisting a small screw, and the syringes removed. The principle is so simple, the team has discovered, that with very little guidance people are perfectly capable of creating glasses to their own prescription.

Oxford University, at his instigation, has agreed to host a Centre for Vision in the Developing World, which is about to begin working on a World Bank-funded project with scientists from the US, China, Hong Kong and South Africa. “Things are never simple. But I will solve this problem if I can. And I won’t really let people stand in my way.”

Cool. A couple points I would like to make:

1) this professor is making a much bigger difference in the “real world” than most people ever will. The idea that professors are all lost in insignificant “ivory towers” is a very inaccurate view of what really happens.
2) Spending money on this kind of thing seems much more important for the human race than spending trillions to bail out poor moves by bankers, financiers… It sure seems odd that we can’t find a few billion to help out people across the globe that are without basic necessities yet we can find trillions to bail out the actions of few thousand bad actors.

Related: Adaptive EyecareBringing Eye Care to Thousands in IndiaRiver Blindness Worm Develops Resistance to DrugsStrawjet: Invention of the Year (2006)Fixing the World on $2 a DayAppropriate Technology

Educating Future Scientists and Engineers

Texas in danger of losing global race

American demand for scientists and engineers is expected to grow four times faster than all other professions over the next decade, according to the U.S. Bureau of Labor Statistics. Yet today, only 5 percent of U.S. college undergraduates earn degrees in science and engineering, whereas in China, 42 percent of students do.

Not only are highly qualified Texas science and math teachers in short supply today, but we’re losing literally thousands each year. In 2007 alone, approximately 4,000 math and science teachers left Texas classrooms, costing our state an estimated $27 million to replace them.

Fortunately, there are programs already proven successful in preventing the loss of highly qualified math and science teachers, such as UTeach, a teacher training and support program launched at The University of Texas at Austin in 1997.

The Academy of Medicine, Engineering and Science of Texas — made up of Texas’ Nobel Laureates and National Academies members — has proposed four practical, actionable recommendations for state leaders to adopt, putting Texas on the path to world-class math and science education for our children, and a prosperous future for our state.

Related: $12.5 Million NSF For Educating High School Engineering TeachersThe Importance of Science EducationFIRST Robotics in MinnesotaUSA Teens 29th in Science

Compounding is the Most Powerful Force in the Universe

A talking head with some valuable info. I remember my father (a statistics professor) getting me to understand this as a small child (about 6 years old). The concept of growth and mathematical compounding is an important idea to understand as you think and learn about the world. It also is helpful so you understand that statistics don’t lie but ignorant people can draw false conclusions from limited data.

It is unclear if Einstein really said this but he is often quoted as saying “compounding is the most powerful force in the universe.” Whether he did or not, understanding this simple concept is a critical component of numeracy (literacy with numbers). Also quoted at times as: “Compound interest is the eighth wonder of the world.” My guess is that people just find the concept of compounding amazing and then attribute quotes about it to Einstein.

I strongly encourage you to watch at least the first 2 segments (a total of 15 minutes). And then take some time and think. Take some time to think about compounding in ways to help you internalize the concepts. You can also read his book: The Essential Exponential For the Future of Our Planet by Albert Bartlett.

Related: Playing Dice and Children’s NumeracySaving for Retirement (compound interest)Bigger Impact: 15 to 18 mpg or 50 to 100 mpg?Sexy MathThe Economic Benefits of Math

Britain’s Doctors of Innovation

photo of Susannah FlemmingSusannah Fleming, a PhD student at the University of Oxford life sciences interface doctoral training centre. She is developing a monitoring system to assess children when they first present to medical care. Source

Minister of State for Science and Innovation, Lord Drayson, announced the £250million (about $370 million) initiative which will create 44 training centres across the UK and generate over 2000 PhD students. They will tackle some of the biggest problems currently facing Britain such as climate change, energy, our ageing population, and high-tech crime.

17 of the centers will put specific emphasis on integrating industrial and business skills with the PhD education. This approach to training has been extensively piloted by EPSRC through a small number of thriving Engineering Doctorate Centres and Doctoral Training Centres in Complexity Science, Systems Biology and at the Life Sciences Interface. This new investment builds on the success of these and will establish a strong group of centres which will rapidly establish a pre-eminent international reputation for doctoral training.

The multidisciplinary centres bring together diverse areas of expertise to train engineers and scientists with the skills, knowledge and confidence to tackle today’s evolving issues. They also create new working cultures, build relationships between teams in universities and forge lasting links with industry.

As I have said before I think countries are smart to invest in their science and technology futures. In fact I believe creating centers of science and technology excellence is a key to future economic wealth.

Full press release: £250 Million to Create New Wave of Scientists and Engineers for Britain

Related: UK Science and Innovation GrantsUK Science and Research FundingNew Engineering School for EnglandBasic Science Research FundingBest Research University Rankings, 2008 (UK second to USA)Britain’s big challenges will be met by doctors of innovation

Thanksgiving, Appropriately

photo of Frew Wube in Ethiopia

This is a post from my Curious Cat Investing and Economics Blog: Financial Thanksgiving. I have tweaked a bit to tie into appropriate technology since that is the related area to me on this blog.

For me, giving back to others is part of my personal financial plan. As I have said most people that are actually able to read this are financially much better off than billions of other people today. At least they have the potential to be if they don’t chose to live beyond their means. Here are some of the ways I give back to others.

Kiva is a wonderful organization and particularly well suited to discuss because they do a great job of using the internet to make the experience rewarding for people looking to help – as I have mentioned before: Reducing Poverty. One of my goals for this blog is to increase the number of readers participating in Kiva – see current Curious Cat Kivans. I have also created a lending team on Kiva. Kiva added a feature that allows people to connect online. When you make a loan you may link you loan to a group.

I actually give more to Trickle Up, I have been giving to them for a long time. They appeal to my same desire to help people help themselves. I believe in the power of capitalism and people to provide long term increases in standards of living. I love the idea of providing support that grows over time. I like investing and reaping the rewards myself later (with investment I make for myself). But I also like to do that with my gifts. I would like to be able to provide opportunities to many people and have many of them take advantage of that to build a better life for themselves, their families and their children.

The photo shows Frew Wube, Haimanot and Melkan (brother and two sisters), an entrepreneur that received a grant from Trickle up. Trickle Up provides grants to entrepreneur, similar to micro loans, except the entrepreneur does not have to pay back the grant. They are able to use the full funds to invest in their business and use all the income they are able to generate to increase their standard of living and re-invest in the business.
Continue reading

Engineers Rule at Honda

Engineers Rule, 2006

Of all the bizarre subsidiaries that big companies can find themselves with, Harmony Agricultural Products, founded and owned by Honda Motor, is one of the strangest. This small company near Marysville, Ohio produces soybeans for tofu. Soybeans? Honda couldn’t brook the sight of the shipping containers that brought parts from Japan to its nearby auto factories returning empty. So Harmony now ships 33,000 pounds of soybeans to Japan.

Longtime auto analyst John Casesa, who now runs a consulting company, says, “There’s not a company on earth that better understands the culture of engineering.” The strategy has worked thus far. Honda has never had an unprofitable year. It has never had to lay off employees.

I checked and Honda was also profitable in 2007 and 2008 fiscal year (ending in September).

Related: Honda EngineeringAsimo Robot: Running and Climbing StairsThe Google Way: Give Engineers RoomGoogle’s Ten Golden Rules