Category Archives: Economics

Posts exploring the economic impacts of science and engineering. The value of strong science and engineering practice has many benefits to the economy – directly and indirectly. Many countries are focusing their future economic plans on advancing their scientific, engineering and technology communities and creating environments that support scientists and engineers.

Best Research University Rankings – 2008

The annual ranking of research Universities are available from Shanghai’s Jiao Tong University. The methodology values publications and faculty awards which provides a better ranking of research (rather than teaching). Results from the 2008 rankings of Top 500 Universities worldwide, country representation of the top schools:

location Top 100 % of World
Population
% of World GDP % of top 500
USA 54     4.6%   27.2%  31.6%
United Kingdom 11  0.9  4.9 8.3
Germany   6  1.3  6.0 8.0
Japan   4  2.0  9.0 6.2
Canada   4  0.5  2.6 4.2
Sweden   4  0.1  0.8 2.2
France   3  0.8  4.6 4.6
Switzerland   3  0.1  0.8 1.6
Australia   3  0.3  1.6 3.0
Netherlands   2  0.2  1.4 2.4
Denmark   2  0.1  0.6 0.8
Finland   1  0.1  0.4 1.2
Norway   1  0.1  0.7 0.8
Israel   1  0.1  0.3 1.2
Russia   1  2.2  2.0 0.4
China  20.5  6.6 6.0
India  17.0  1.9 0.4

There is little change in most of the data from last year, which I think is a good sign, it wouldn’t make much sense to have radical shifts over a year in these rankings. Japan lost 2 schools in the top 100, France lost 1. Denmark (Aarhus University) and Australia (University of Sydney) gained 1. Last year there was a tie so there were 101 schools in the top 100.

The most dramatic data I noticed is China’s number of top 500 schools went from 14 to 30, which made me a bit skeptical of what caused that quick change. Looking more closely last year they reported the China top 500 totals as (China 14, China-Taiwan 6 and China-Hong Kong 5). That still gives them an impressive gain of 5 schools.

Singapore has 1 in the 102-151 range. Taiwan has 1 ranked in the 152-200 range, as do Mexico, Korea and Brazil. China has 9 in the 201-302 range (including 3 in Hong Kong). India has 2 in the 303-401 range.

University of Wisconsin – Madison is 17th again 🙂 My father taught there while I grew up.
Continue reading

Lake Superior vs. Silicon Valley Hot Spots

Nice post from Rich Hoeg – Lake Superior vs. Silicon Valley Hot Spots:

Recently I had the opportunity to visit friends in Silicon Valley. While riding the light rail in Mountain View, I experienced a moment of revelation of how life differs between the shores of Lake Superior and Silicon Valley. Six young men boarded the train … all obviously geeks in their young 30’s … their laptops (all Apples) were already fired up and ready. They proceeded to have a LAN party while riding the light rail on the way to work. Why was this possible?? You need to understand that Google provides free wireless to the entire town on Mountain View. The world is connected … and interacts in different ways … at least in Silicon Valley.

Thus, life is different on the shores of Lake Superior. I am a lone software nerd looking for a wireless hotspot … not a light rail rider with free unlimited access anywhere in my community. Out in Silicon Valley I tried Google’s connection; it worked fine and did not ask for anything beyond my normal Google account.

This is one small example of why Silicon Valley is so successful. To be economically successful, countries need to focus on big things (investing in infrastructure, sensible laws relating to innovation, creating and maintaining good capital markets, investing in science and engineering education, encouraging entrepreneurs, transportation systems…) and the small stuff like this. Silicon Valley continue to be a bright light (as do other places, like Boston) but overall the USA seems to be trailing, not leading, far too often lately.

Related: Engineering the Future EconomyUSA Science Losing GroundDiplomacy and Science ResearchUSA Broadband is Slow. Really Slow.

USA Broadband is Slow. Really Slow.

Surprise, surprise: U.S. broadband is slow. Really slow.

The U.S. comes in 15th on a worldwide scale, far behind the leaders Japan, South Korea and Finland.

A file that takes four minutes to download in South Korea would take nearly an hour and a half to download in the U.S. using the average bandwidth. Japanese users leaves U.S. users behind with an eye-popping 63.60 Mb/s download link. This means that Japanese can download an entire movie in just two minutes, as opposed to two hours or more here in the U.S. Just in case you are wondering: No, Japanese users do not pay more for their broadband connections. In fact, U.S. broadband cost is among the highest in the world.

Japan dominates international broadband speed with a median download speed of approximately 63 Mb/s, more than enough to stream DVD-quality video with surround audio in real time. Next on the list is South Korea where download speeds achieve an average of 49.50 Mb/s. Finland and France follow with 21.70 Mb/s and 17.60 Mb/s, respectively. Canada ranked eighth with an average download speed of 7.60 Mb/s. The U.S. came in 15th with 2.35 Mb/s.

I see this as an economic issue. Countries that have provided an investment in internet infrastructure to provide broadband to the home at reasonable prices will be rewarded.

Related: Speed Matter Report (pdf) – PhD Student Speeds up Broadband by 200 timesPlugging America’s Broadband GapThe Next Generation InternetYouTube Access Deniedinternet related posts

Plugging America’s Broadband Gap

Plugging America’s Broadband Gap

Martin is concerned about a U.S. broadband gap. Only 60% of American households have speedy Net access. That puts the country in 15th place among developed nations, according to the Organization for Economic Cooperation & Development. It’s a mighty fall from 2001, when the U.S. ranked fourth.

This is one of a number of facts that those in the USA seem ignorant of: we have a far worse internet and cell phone infrastructure than many countries. Those that think the USA is the leading technology country should be alarmed by such poor performance in a critical area such as internet infrastructure.

There are three basic options for catching up. The government can take the lead, making its own investments in broadband. Second, the government can mandate that existing providers make the service available more widely. Most realistically perhaps, the government can create incentives for private companies to roll out more broadband. That’s what Martin is trying to do. He wants to auction off wireless spectrum and require the winning bidder to provide free broadband throughout the country. The company could make money by selling advertising and advanced services.

The free service wouldn’t be the fastest on the market. The winning bidder would have to offer a minimum speed of 768 kilobits per second to 95% of the country within 10 years. Although that’s technically broadband, it’s about half the speed of today’s average U.S. broadband link.

Still, Martin’s proposal has drawn support because it has the potential to crack what has become a broadband duopoly. In most markets, only one telecom company and one cable provider offer the service. A third alternative with decent speed and big savings off the current $50 monthly average price could spark more competition. The leading contender to win the auction is M2Z Networks, a startup founded by former FCC staffer John Muleta.

The FCC approach is no panacea. It’ll provide competition at the low end of the market and will do nothing to bring the U.S. the blazing speeds common in Korea and Japan.

Related: China Builds a Better InternetInternet Undersea CablesUnderstanding Computers and the Internet

Awesome Robot: uBot-5

   
Cool video on the uBot-5 from UMass Amherst.

The uBot-5 is dynamically stable, using two wheels in a differential drive configuration for mobility. Dynamically stable robots are well suited to environments designed for humans where both a high center of mass and a small footprint are often required.

via: Pop Culture and Engineering Intersect

Toyota has long been interested in personal robot assistants. And the uBot-5, under development at UMass-Amherst, is also looking to meeting that need: Robot developed by computer scientists to assist with elder care:

Baby boomers are set to retire, and robots are ready to help, providing elder care and improving the quality of life for those in need.

The uBOT-5 carries a Web cam, a microphone, and a touch-sensitive LCD display that acts as an interface for communication with the outside world. “Grandma can take the robot’s hand, lead it out into the garden and have a virtual visit with a grandchild who is living on the opposite coast,” says Grupen, who notes that isolation can lead to depression in the elderly.

Grupen studied developmental neurology in his quest to create a robot that could do a variety of tasks in different environments. The uBot-5’s arm motors are analogous to the muscles and joints in our own arms, and it can push itself up to a vertical position if it falls over. It has a “spinal cord” and the equivalent of an inner ear to keep it balanced on its Segway-like wheels.

Such robots have a huge market waiting for them if engineers can provide models that can be useful at the right price. The future of such efforts looks very promising.

Related: WALL-E Robots Coming into Massachusetts HomesRobot NurseToyota iUnitAnother Humanoid Robot

Tapping America’s Potential

Another business coalition, Tapping America’s Potential coalition, is encouraging investment an increased investment in science and engineering to strengthen the USA economy.

The economy of the 21st century is characterized by increasing competition around the globe, and nowhere do we see that more clearly than in the scientific fields, said William D. Green, chairman and CEO of Accenture and chairman of Business Roundtable’s Education, Innovation & Workforce Initiative and a member of TAP. America’s ability to innovate begins with the talent, knowledge and creative thinking of its workforce, and businesses and government must continue to work together to strengthen science and technology education.

The report includes progress updates on the TAP coalition’s agenda to advance U.S. competitiveness in STEM through:

  • Boosting and sustaining funding for basic research, especially in the physical sciences and engineering
  • Reforming visa and immigration policies to enable the United States to attract and retain STEM students from around the world to study for advanced degrees and stay to work in the United States
  • Upgrading K–12 math and science teaching to foster higher student achievement, including differentiated pay scales for mathematics and science teachers
  • Building public understanding and support for making improvement in STEM performance a national priority

Related: Asia: Rising Stars of Science and EngineeringEngineering the Future EconomyIncreasing American Fellowship Support for Scientists and EngineersDiplomacy and Science Research

S&P 500 CEOs are Engineering Graduates

2007 Data from Spencer Stuart on S&P 500 CEO (they deleted the link so the link was removed – yet another website proves to be unreliable without basic web usability principles being followed) shows once again more have undergraduate degrees in engineering than any other field.

Field
   
% of CEOs
2007 2006 2005

Engineering 21 23 20
Economics 15 13 11
Business Administration 13 12 15
Accounting 8 8 7
Liberal Arts 6 8 9
No degree or no data 3 3

The report does not show the fields for the rest of the CEO’s. 40% of S&P CEOs have MBAs. 27% have other advanced degrees. The University of Wisconsin-Madison, Princeton and Harvard tied for the most CEO’s with undergraduate degrees from their universities at 12. University of Texas has 10 and Stanford has 9.

Data for previous years is also from Spencer Stuart: 2006 S&P 500 CEO Education StudyTop degree for S&P 500 CEOs? Engineering (2005 study)

Related: Engineering Education Study Debateposts on science and engineering careersScience and Engineering Degrees lead to Career SuccessThe Future is Engineering

Cost Efficient Solar Dish by Students

Solar Energy Dish

Low-cost system could revolutionize global energy production

A team led by MIT students this week successfully tested a prototype of what may be the most cost-efficient solar power system in the world – one team members believe has the potential to revolutionize global energy production.

The system consists of a 12-foot-wide mirrored dish that team members have spent the last several weeks assembling. The dish, made from a lightweight frame of thin, inexpensive aluminum tubing and strips of mirror, concentrates sunlight by a factor of 1,000 – creating heat so intense it could melt a bar of steel.

To demonstrate the system’s power, Spencer Ahrens, who just received his master’s in mechanical engineering from MIT, stood in a grassy field on the edge of the campus this week holding a long plank. Slowly, he eased it into position in front of the dish. Almost instantly there was a big puff of smoke, and flames erupted from the wood. Success!

Burning sticks is not what this dish is really for, of course. Attached to the end of a 12-foot-long aluminum tube rising from the center of the dish is a black-painted coil of tubing that has water running through it. When the dish is pointing directly at the sun, the water in the coil flashes immediately into steam.

Someday soon, Ahrens hopes, the company he and his teammates have founded, called RawSolar, will produce such dishes by the thousands. They could be set up in huge arrays to provide steam for industrial processing, or for heating or cooling buildings, as well as to hook up to steam turbines and generate electricity. Once in mass production, such arrays should pay for themselves within a couple of years with the energy they produce.

“This is actually the most efficient solar collector in existence, and it was just completed,” says Doug Wood, an inventor based in Washington state who patented key parts of the dish’s design–the rights to which he has signed over to the student team.

Great job students. Good luck with RawSolar. Photo (by David Chandler): Matt Ritter shows steam coming from the return hose after passing through the coil above the solar dish.

Related: Cheap, Superefficient SolarSolar Thermal in Desert, to Beat Coal by 2020Solar Tower Power GenerationEngineering Students Design Innovative Hand Dryerposts on solar energy

$1 Billion for Life Sciences in Massachusetts

Petri dish for economic growth

So far, the signs are good. The bill commits $500 million for research facilities, infrastructure improvements, and other capital projects; $250 million for tax credits; and $250 million for research grants. The plan is flexible enough to support research at private institutions while making major investments at public universities. Patrick and legislators fended off the most flagrant attempts to divert money into political pet projects with little direct relevance to the biotech industry, such as $49.5 million for a science building at a state college with no graduate science programs.

As I have mentioned many times the centers of scientific excellence are important for economic success. Massachusetts has some great advantages with MIT, Harvard, many biotech companies… but still must continue to focus on staying a center of excellence.

Related: Harvard Plans Life Sciences CampusChina’s Gene Therapy Investment$600 Million for Basic Biomedical ResearchSingapore woos top scientists with new labsEconomic Strength Through Technology Leadership

Data Center Energy Needs

It’s Too Darn Hot

The tech industry is facing an energy crisis. The cost of power consumption by data centers doubled between 2000 and 2006, to $4.5 billion, and could double again by 2011, according to the U.S. government. With energy prices spiking, the challenge of powering and cooling these SUVs of the tech world has become a major issue for corporations and utilities.

The modern data center is like a vast refrigerator with hundreds or thousands of ovens blazing away inside. Six-foot-tall metal racks stacked with pizza box-size computers, storage devices, and network-routing machines are lined up in rows. Chilled air blows through the equipment from vents in the floors of “cold aisles.” Hot air blows out of the back ends into “hot aisles” and is drawn off and vented out of the building. Inside the centers, there’s a dull roar as large quantities of air shoot through ducts, vents, and computers.

So intense is the competition among tech companies to lower their costs of processing data that some treat information about their energy use like state secrets.

The $4.5 billion spent in the U.S. in 2006 is the equivalent of the electric bills for 5.8 million U.S. households.

When you realize the huge cooling needs (in addition to the need for electricity to run the computers) you can see the huge advantage of a cold climate where you can take advantage of cool air for cooling.

Related: Geothermal Power in AlaskaCost of Powering Your PCGoogle Investing Huge Sums in Renewable EnergyHigh-efficiency computer power supplies