Category Archives: K-12

About or related to primary (k-12) science and engineering education. Likely of interest to teachers and administrators. Teachers may also find many of the posts we feel are of interests to students interested in science and engineering useful.

Educating Future Scientists and Engineers

Texas in danger of losing global race

American demand for scientists and engineers is expected to grow four times faster than all other professions over the next decade, according to the U.S. Bureau of Labor Statistics. Yet today, only 5 percent of U.S. college undergraduates earn degrees in science and engineering, whereas in China, 42 percent of students do.

Not only are highly qualified Texas science and math teachers in short supply today, but we’re losing literally thousands each year. In 2007 alone, approximately 4,000 math and science teachers left Texas classrooms, costing our state an estimated $27 million to replace them.

Fortunately, there are programs already proven successful in preventing the loss of highly qualified math and science teachers, such as UTeach, a teacher training and support program launched at The University of Texas at Austin in 1997.

The Academy of Medicine, Engineering and Science of Texas — made up of Texas’ Nobel Laureates and National Academies members — has proposed four practical, actionable recommendations for state leaders to adopt, putting Texas on the path to world-class math and science education for our children, and a prosperous future for our state.

Related: $12.5 Million NSF For Educating High School Engineering TeachersThe Importance of Science EducationFIRST Robotics in MinnesotaUSA Teens 29th in Science

Fund Teacher’s Science Projects

With donorschoose.org teachers submit project proposals for materials or experiences their students need to learn. These ideas become classroom reality when concerned individuals, whom we call Citizen Philanthropists, choose projects to fund.

Such as: Budding Scientists Need Basics!!! – “My students need 9 hands-on science equipment such as graduated cylinders, magnifying glasses, and vivid photographic books about weather and life cycles so they can experience science first-hand. The cost of this proposal is $386”

Hands On Science! – “My students need a human body model, a skeleton model, a skull model, 2 microscopes, beakers and graduated cylinders. The cost of this proposal is $1,060”

Eyes On Observation! – “My students need 4 Brock Magiscopes. The cost of this proposal is $688”

Let’s Rock the Rocks – “My students needs 2 complete sets of classroom Rock, Fossil & Mineral Collections and a Rock & Soil Activity Tub for science. The cost of this proposal is $351”

You can target high poverty schools, if you wish. If you want to help make a difference in the science literacy of the USA go ahead and find a project you want to help fund and make a donation. Or if you are a teacher, add a project for others to fund.

Related: Hands-on High School Engineering Education in MinnesotaThe Economic Consequences of Investing in Science EducationBuilding minds by building robotsEducation Resources for Science and Engineering

High School Inventor Teams @ MIT

Sadly MIT deleted the video after having it live for several years.

Lemelson-MIT InvenTeams is a national grants initiative of the Lemelson-MIT Program to foster inventiveness among high school students. The webcast above shows a high school team presenting a project they completed to create a solution to provide clean water. This stuff is great. I love appropriate technology. I love seeing kids think and create effective solutions to real problems. This is how you get kids to learn – not boring classes (at least kids like me).

The students are passing on the project to students at their school to continue to work on. (MIT TechTV used to have many more presentation by other InvenTeams – not anymore 🙁 ) InvenTeams and MIT deserve a great deal of credit for creating such great learning opportunities and great solutions for the world.

InvenTeams composed of high school students, teachers and mentors are asked to collaboratively identify a problem that they want to solve, research the problem, and then develop a prototype invention as an in-class or extracurricular project. Grants of up to $10,000 support each team’s efforts. InvenTeams are encouraged to work with community partners, specifically the potential beneficiaries of their invention.

Related: Water and Electricity for AllWater Pump Merry-go-RoundEngineering a Better World: Bike Corn-ShellerInspiring a New Generation of InventorsKids in the Lab: Getting High-Schoolers Hooked on Science

Poor Reporting and Unfounded Implications

Correlation is not causation. And reporting of the form, “1 time this happened” and so I report it as though it is some relevant fact, is sad. Take any incident that happened and then state random traits you want to imply there is some relevant link to (blue eyes, red hair, people that watch IT Crowd, people that bought a banana yesterday, tall, overweight, did poorly in math…) and most people will know you are ignorant.

Looking at random data people will find patterns. Sound scientific experimentation is how we learn, not trying to find anything that support our opinions. Statistics don’t lie but ignorant people draw faulty conclusions from data (when they are innumerate – illiteracy with mathematical concepts).

It’s not what the papers say, it’s what they don’t by Ben Goldacre

On Tuesday the Telegraph, the Independent, the Mirror, the Express, the Mail, and the Metro all reported that a coroner was hearing the case of a toddler who died after receiving the MMR vaccine, which the parents blamed for their loss. Toddler ‘died after MMR jab’ (Metro), ‘Healthy’ baby died after MMR jab (Independent), you know the headlines by now.

On Thursday the coroner announced his verdict: the vaccine played no part in this child’s death. So far, of the papers above, only the Telegraph has had the decency to cover the outcome.

Measles cases are rising. Middle class parents are not to blame, even if they do lack rhetorical panache when you try to have a discussion with them about it.

They have been systematically and vigorously misled by the media, the people with access to all the information, who still choose, collectively, between themselves, so robustly that it might almost be a conspiracy, to give you only half the facts.

Science education is important. Even if people do not become scientists, ignorance of scientific thinking is dangerous. The lack of scientific literacy allows scientifically illiterate leaders to make claims that are lacking scientific merit. And results in people making poor choices themselves, due to their ignorance.

Related: Bad Science blog by Ben GoldacreIllusion of Explanatory DepthIllusions – Optical and Otherposts on vaccinesposts on scientific literacy

National Girls Collaborative Project for STEM

The National Girls Collaborative Project for science, technology, engineering, and mathematics (STEM) collaborates with those seeking to increase the participation of girls in STEM feeder activities. The goal is to encourage girls to pursue careers in science, technology, engineering, and math.

Collaboration as a Means to Building Capacity: Results and Future Directions of the National Girls Collaborative Project:

The purpose of the NGCP is to extend the capacity, impact, and sustainability of
existing and evolving girl-serving STEM projects and programs. The NGCP is structured to bring organizations together to compare needs and resources, to share information, and to plan strategically to expand STEM–related opportunities for girls.

Although we are still refining it, the NGCP collaborative model has shown its effectiveness through increased collaboration and minigrant projects with sustained results. As we have described, the success to date of the NGCP in developing collaborations has been demonstrated via data from the collaboration rubric, mini-grant reports, and metrics that show how collaborative activities have increased over the duration of the NGCP projects. As NGCP expands over the next few years to provide regional collaboratives across the entire United States and Puerto Rico, we will continue our assessment of its impact and hope to be able to report its influence on building capacity to attract and retain girls in STEM.

I support programs encouraging STEM activities for girls – and boys. NSF data shows for 2005 shows women outnumbered men in undergraduate degree in science and engineering. For post-graduate degrees men still outnumbering women but that gap has been reducing and seems like it will continue to. And the representations in the workplace seem poised to continue to show a reducing number of men and increasing number of women. Engineering is an example of an area with far more men than women graduating – the imbalance is equivalent to the imbalance the other way for psychology.

Related: Girls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyFIRST Robotics in MinnesotaKids in the Lab: Getting High-Schoolers Hooked on Science

DoE: Minority Science and Engineering Improvement Program

The United States Department of Education’s Minority Science and Engineering Improvement Program (MSEIP) provides funds to schools to provide awards to students. 20 new awards (average value of $139,000) were awarded this year. That brings total funding this year to 71 awards (50 continue from previous years). Institutions recieving funds include: Clark Atlanta University, Rust College, New Mexico State University, Spelman College, Virginia State University and the College of Menominee Nation.

The program is designed to effect long-range improvement in science at predominantly minority and engineering education programs to increase the participation of underrepresented ethnic minorities, particularly minority women, into scientific and technological careers.

Wiley College, one of the new recipients, aims to increase the number of science majors, especially in the fields of biology and chemistry. A key feature of this grant is the creation of a high school science competition that will allow local and regional high school students to visit the campus and compete in a variety of scientific events.

This event will bring five area high schools together to compete in ten scientific events based on biology, chemistry, mathematics and physics. Individual first-place winners will be given scholarships to Wiley College. There will also be an overall grand champion awarded. This event will allow high school students to experience life at Wiley College and the possibilities of a career in science.

“This event not only gives students a financial reason to enroll at Wiley, but also allows them to become familiar with the campus and its faculty and students, said Dr. Shumate. “This grant also furthers a connection between Wiley and both the University of Texas at Dallas and the University of Arkansas, allowing current Wiley students to attend these schools in the summer for biomedical research.”

Wiley hosts HS science competition Saturday

Related: NSF Undergraduate STEM ScholarshipsLoan Forgiveness Program for Engineering StudentsA Life-changing GiftScience and Engineering Scholarships and Fellowships Directoryscience scholarships posts

Toyota Operates High School in India

Toyota Eyes India Market, Builds School to Get Edge

Built on a rugged hillside in southern India that is populated by wildcats [see below] and monkeys, Toyota’s sprawling technical training school, which opened last year, gives about 180 junior-high-school graduates an education in everything from dismantling transmissions to Japanese group exercises.

Toyota wants to turn students like Satish Lakshman, the son of a poor farmer, into a skilled employee who can boost the auto maker’s fortunes in this key emerging market. “We are learning discipline, confidence and continuous improvement,” says Mr. Lakshman, an energetic 18-year-old.

At the foundation of its growth plan is the Toyota Technical Training Institute. India’s auto market is growing at such a fast pace that skilled workers are in short supply. Toyota says the school will enable the company to develop the productive, skilled employees it needs.

Toyota has taken a similar approach in China, where it has helped the government run a technical training center since 1990. In India, rival auto makers are following Toyota’s lead. In September, Honda announced plans to open a technical college. Other car makers have formed partnerships with India’s technical institutes to improve training.

The school teaches students practical skills such as welding, auto assembly and maintenance. It also gives the young recruits a smattering of classes in such subjects as math, English and Japanese as well as lessons in the company’s cherished principles of consensus building, continuous improvement and eliminating waste.

Toyota is willing to invest in the long term. A much better sign than a company that is willing to pay their executives salaries that top the wealth of kings. Toyota also believes in education: Idle Workers Busy at Toyota.

Related: Toyota Building Second Plant in IndiaEngineering Education in IndiaManufacturing Takes off in IndiaHigh School Students in USA, China and IndiaLargest Manufacturing Countries

Continue reading

Electrifying a New Generation of Engineers

Electrifying a New Generation of Engineers

Ybarra’s K-12 education efforts began informally in 1993 while he was a newly arrived professor at Duke, toting lasers and other captivating bits of engineering equipment to local schools to drum up excitement for science and engineering and an array of programs grew from there.

Based on his growing awareness of the value of hands-on learning, Ybarra was longing for a way to help get more hands-on learning into the classroom. A few years later, in 1999, he was able to secure his first significant grant in the area. With support from the National Science Foundation Ybarra formalized his interactions with local schools by establishing a fellowship program that would put Duke engineering students in the classrooms to vastly expand the number of schools impacted.

To date, Ybarra’s programs have impacted more than 150,000 kids, and with so many programs now in place and spreading, that number increases by about 50,000 students per year. But personal stories, rather than numbers, are what Ybarra finds most gratifying. “When students contact me years later to tell me that the experiences they had in my programs inspired them to pursue a career in engineering or one of the sciences, it gives me a very deep sense of satisfaction.”

Related: Engineering K-PhDEngineering a Better Blood Alcohol SensorPromoting Science and EngineeringYale Cultivates Young ScientistsHigh School Students in USA, China and India

High-School Social Skills Predict Better Earnings than Test Scores

High-School Social Skills Predict Better Earnings than Test Scores

Ten years after graduation, high-school students who had been rated as conscientious and cooperative by their teachers were earning more than classmates who had similar test scores but fewer social skills, said a new University of Illinois study.

The study’s findings challenge the idea that racial, ethnic, and socioeconomic gaps in educational attainment and earnings can be narrowed solely by emphasizing cognitive skills, said Christy Lleras, a University of Illinois assistant professor of human and community development.

“It’s important to note that good schools do more than teach reading, writing, and math. They socialize students and provide the kinds of learning opportunities that help them to become good citizens and to be successful in the labor market,” she said.

“Unless we address the differences in school climates and curriculum that foster good work habits and other social skills, we’re doing a huge disservice to low-income kids who may be entering the labor market right after high school, especially in our increasingly service-oriented economy,” Lleras added.

The University of Illinois study analyzed data from the National Educational Longitudinal Study, which followed a diverse group of 11,000 tenth graders for 10 years, tracking not only their scores on standard achievement tests but teacher appraisals of such qualities as the students’ work habits, their ability to relate well to peers, and their participation in extracurricular activities, a proxy for the ability to interact well with both students and adults.

The teachers’ assessments were then compared with the students’ self-reported educational attainments and earnings 10 years after high-school graduation. Even after controlling for students’ achievement test scores, family socioeconomic status, and educational attainment, Lleras found that such social skills as conscientiousness, cooperativeness, and motivation were as important as test scores for success in the workplace.

Related: Hands-on High School Engineering Education in Minnesotabuilding on students natural curiouslyFun k-12 Science and Engineering Learning
Continue reading

Engineer Your Life

Engineer Your Life is an outreach initiative committed to sharing with college-bound young women the opportunities available to them in the world of engineering. Unfortunately they chose to use flash content and the website fails to follow simple usability guidelines (basic stuff like human readable urls, links that work without javascript…) but there is decent content. The use of flash and failing to pay attention to usability are highly correlated in my experience. The site profiles 12 engineers including Judy Lee:

Judy’s enthusiasm paid off. A few months later, the IKEA engineer asked her to design a children’s play mat. Judy was thrilled and soon found herself in IKEA headquarters in Sweden, where she worked with a team of engineers and product developers. It was at this moment that she realized her ideal job was one that truly offered a balance between creativity and problem solving.

Designing for IKEA
Judy began her new project by thinking about the way kids play. “I realized that kids today play indoors a lot. Maybe because the world seems a little more dangerous and parents are more protective. So I knew that this mat had to incorporate some kind of physical play element.” Rather than a static mat, Judy designed one resembling a giant lazy Susan that kids could spin around on. “Once I had the concept, the mechanical engineer in me took over. I needed something simple. Simplicity is awesome. My mat is basically two injection-molded pieces of plastic that spin on a set of interior wheels.”

Judy will never forget the experience of seeing her mat in an IKEA store. “It was incredible,” she recalls, “and it was such important validation for me that my ideas matter, they’re good, and they’re marketable.”

Dream Job at IDEO
Today, Judy has found her dream job in Palo Alto, California, at a company called IDEO, one of the country’s most innovative design firms. IDEO hires engineers, designers, psychologists, and businesspeople who work in teams to develop cutting-edge products (they created Apple Computer’s first mouse, for example). Judy designs children’s toys, pet products, and packaging for over-the-counter drugs and food. “I feel pretty lucky to have such a creative and interesting job. I’m surrounded by brilliant people. It doesn’t really seem like work. It’s just plain fun!”

Related: Beloit College: Girls and Women in ScienceWomen Choosing Other Fields Over Engineering and MathNASA You Have a ProblemGirls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyWomen Working in Scienceother posts on poor usability