The lyre bird, not only mimics the calls of other birds, buy also man made noises such as cameras, saws and chainsaws, in an attempt to impress potential mates. David Attenborough narrates the above clip.
The President announces the “Educate to Innovate” initiative, a campaign to get students excited about pursuing careers in science, technology, engineering and mathematics. Quotes from President Obama from his speech – (see webcast above):
“As President, I believe that robotics can inspire young people to pursue science and engineering.”
“Now the hard truth is that for decades we’ve been losing ground. One assessment shows American 15-year-olds now rank 21st in science and 25th in math when compared to their peers around the world.”
“And today, I’m announcing that we’re going to have an annual science fair at the White House with the winners of national competitions in science and technology. If you win the NCAA championship, you come to the White House. Well, if you’re a young person and you’ve produced the best experiment or design, the best hardware or software, you ought to be recognized for that achievement, too. Scientists and engineers ought to stand side by side with athletes and entertainers as role models, and here at the White House we’re going to lead by example. We’re going to show young people how cool science can be.”
“improving education in math and science is about producing engineers and researchers and scientists and innovators who are going to help transform our economy and our lives for the better.”
She brought about fundamental change in the British military medical system, preventing any such future calamities. To do it, she pioneered a brand-new method for bringing about social change: applied statistics.
…
he statistics changed Nightingale’s understanding of the problems in Turkey. Lack of sanitation, she realized, had been the principal reason for most of the deaths, not inadequate food and supplies as she had previously thought.
…
As impressive as her statistics were, Nightingale worried that Queen Victoria’s eyes would glaze over as she scanned the tables. So Nightingale devised clever ways of presenting the information in charts. Statistics had been presented using graphics only a few times previously, and perhaps never to persuade people of the need for social change.
The Genetic Science Learning Center, University of Utah has a nice web gadget that lets you zoom in on various cells to see how large they are compared to each other. Above see a red blood cell, x chromosome, baker’s yeast and (small) e-coli bacterium.
A red blood cell is 8 micron (micro-meter 1/1,000,000 of a meter). E coli is 1.8 microns. Influenza virus is 130 nanometers (1/1,000,000,000 a billionth of a meter). Hemoglobin is 6.5 nanometers. A water molecule is 275 picometers (1 trillionth of a meter).
Engineers are terribly misunderstood. Which might be one reason 85 percent of kids say “no way” to an engineering career. “The stereotype of the engineer is just wrong,” says Warren Miller, a retired Florida engineer who e-mailed me after I wrote about the short supply of workers in science and technology.
They think it’s “someone who is half-robot super genius” and “way more interested in machinery or circuitry than people.”
…
Part of the misunderstanding starts with adults who influence future workers. The survey found that only 20 percent of parents have encouraged or will encourage their children to consider an engineering career. More girls say their parents are likely to encourage them to become an actress than an engineer.
…
The National Science Foundation estimates a shortage of 70,000 engineers by 2010. To reverse the trend, we need to apply the engineer’s biggest tool: logic.
Based on the title of this blog you can guess I am in favor of engineers. Engineers can find great rewards in their careers from interesting work to high pay and leadership positions. In the modern world you need an understanding of science and engineering just to be a literate member of society.
A young woman from Sheffield has turned a GCSE coursework project into an award-winning stair-climbing device for older and disabled people. Ruth Amos has launched her StairSteady handrail at Naidex 2008 – the annual disability exhibition in Birmingham.
She told BBC News that she was inspired to create the device for the father of one of her teachers who had had a stroke. She won an award for her idea and has now set up a company to sell it. The StairSteady is a horizontal rail at 90 degrees to the wall or banister that people can hold on to as they go up or down stairs.
…
The invention was then entered for the Young Engineer for Britain competition and won first prize.
Great stuff. Innovation doesn’t have to be amazing technology. Finding solutions that make people’s lives better is the key. And then showing some entrepreneurship is great, Ruth setup her company when she was 16. I wish her luck.
Every high school biology student learns the basics of how genes are expressed: DNA, the cell’s master information keeper, is copied into messenger RNA, which carries protein-building instructions to the ribosome, the part of the cell where proteins are assembled.
But it turns out the picture is far more complicated than that. In recent years, biologists have discovered a myriad of other molecules that fine-tune this process, including several types of RNA (ribonucleic acid). Through a naturally occurring phenomenon known as RNA interference, short strands of RNA can selectively intercept and destroy messenger RNA before it delivers its instructions.
…
Double-stranded RNA molecules called siRNA (short interfering RNA) bind to complementary messenger RNA, then enlist the help of proteins, the RNA-induced silencing complex. Those proteins cleave the chemical bonds holding messenger RNA together and prevent it from delivering its protein-building instructions.
This article from MIT is one, of many, showing MIT’s commitment to science education of the public. Good job, MIT.
Indoor dust is a mixture of soil tracked into a residence, particulate matter derived from ambient outdoor air, and importantly, organic matter. Indoor dust is about 40% organic matter by weight in residential housing. Particles tracked into a residence are redistributed on floor surfaces account for over 60% of the dust mass on floors.
This webcast shows iRobot’s (Romba maker) prototypes for soft flexible robots. The robot uses “jamming” to morph the body which allows animal like locomotion and the ability to reshape the body to squeeze through small and difficult to navigate locations.
UCLA Professor Aydogan Ozcan‘s invention (LUCAS) enables rapid counting and imaging of cells without using any lenses even within a working cell phone device. He placed cells directly on the imaging sensor of a cell phone. The imaging sensor captures a holographic image of the cells containing more information than a conventional microscope. The CelloPhone received a Wireless Innovations Award from Vodafone
a wireless health monitoring technology that runs on a regular cell-phone would significantly impact the global fight against infectious diseases in resource poor settings such as in Africa, parts of India, South-East Asia and South America.
The CelloPhone Project aims to develop a transformative solution to these global challenges by providing a revolutionary optical imaging platform that will be used to specifically analyze bodily fluids within a regular cell phone. Through wide-spread use of this innovative technology, the health care services in the developing countries will significantly be improved making a real impact in the life quality and life expectancy of millions.
…
For most bio-medical imaging applications, directly seeing the structure of the object is of paramount importance. This conventional way of thinking has been the driving motivation for the last few decades to build better microscopes with more powerful lenses or other advanced imaging apparatus. However, for imaging and monitoring of discrete particles such as cells or bacteria, there is a much better way of imaging that relies on detection of their shadow signatures. Technically, the shadow of a micro-object can be thought as a hologram that is based on interference of diffracted beams interacting with each cell. Quite contrary to the dark shadows that we are used to seeing in the macro-world (such as our own shadow on the wall), micro-scale shadows (or transmission holograms) contain an extremely rich source of quantified information regarding the spatial features of the micro-object of interest.
By making use of this new way of thinking, unlike conventional lens based imaging approaches, LUCAS does not utilize any lenses, microscope-objectives or other bulk optical components, and it can immediately monitor an ultra-large field of view by detecting the holographic shadow of cells or bacteria of interest on a chip. The holographic diffraction pattern of each cell, when imaged under special conditions, is extremely rich in terms of spatial information related to the state of the cell or bacteria. Through advanced signal processing tools that are running at a central computer station, the unique texture of these cell/bacteria holograms will enable highly specific and accurate medical diagnostics to be performed even in resource poor settings by utilizing the existing wireless networks.