Category Archives: Education

Vampire Moth Discovered

Vampire Moth Discovered

Entomologist Jennifer Zaspel at the University of Florida in Gainesville said the discovery suggests the moth population could be on an “evolutionary trajectory” away from other C. thalictri populations.

In January, she will compare the Russian population’s DNA to that of other populations and other species to confirm her suspicions. “Based on geography, based on behavior, and based on a phenotypic variation we saw in the wing pattern, we can speculate that this represents something different, something new,” Zaspel said.

Only male moths exhibit blood feeding, she noted, raising the possibility that as in some species of butterflies and other moths, the Russian moths do it to pass on salt to females during copulation.

“There is no evidence it prolongs the life of the male, or anything like that,” she said. “So we suspect that it is probably going to the female.” The sexual gift, she said, would provide a nutritional boost to young larvae that feed on leaf-rich, but sodium-poor, diets.

Related: Darwin’s Orchid PredictionWhy Insects Can’t Fly Straight at NightEat Less Salt to Save Your Heart

Dean Kamen: Stirling Engines

Dean Kamen: part man, part machine

Conceived in Scotland almost 200 years ago, the Stirling [engine] is a marvel of thermo-dynamics that could help to replace the internal combustion engine – in theory it can turn any source of heat into electricity, in silence and with 100 per cent efficiency. But corporations including Phillips, Ford and Nasa have devoted decades of research, and millions of dollars, to developing the engine, and all retired defeated, having failed to find a way of turning the theoretical principles of the engine into a workable everyday application. Kamen, nevertheless, has spent the past 10 years and, he estimates, up to $40 million working on the problem.

Now he and his engineers have built and tested a range of Stirling engines suitable for mass production that can be run on anything from jet fuel to cow dung. The one in the boot of the small blue car is designed to extend its range and constantly recharge its batteries to make a new kind of hybrid vehicle: one fit for the roads of the 21st century. A Stirling-electric hybrid, Kamen tells me, can travel farther and more efficiently than conventional electric cars; it generates enough power to run energy-hungry devices such as heaters and defrosters that are essential for drivers who, unlike those he calls the ‘tofu heads’ of California, must cope with a cold climate; and even using petrol, the engine runs far cleaner than petrol-electric hybrids such as Toyota’s Prius.

However, Kamen confesses, his new creation isn’t quite finished yet: ‘The Stirling engine’s not hooked up. Which really pisses me off.’

But it could work?

‘It will work,’ he says. ‘Trust me.’

Related: R&D Magazine’s 2006 Innovator of the YearRobotic Prosthetic Arms for People

Common Cold Alters the Activity of Genes

Scientists Come Closer to Unlocking Secrets of Common Cold

Canadian and U.S. researchers have found that the human rhinovirus, long blamed for causing the common cold, doesn’t actually cause those annoying sniffles, sneezes, and coughs.

Instead, the ubiquitous virus alters the activity of genes in the body, which then results in the misery that afflicts most people every year or so, according to a study in the first November issue of the American Journal of Respiratory and Critical Care Medicine.

Human rhinovirus (HRV) causes some 30 percent to 50 percent of common colds and can also worsen more serious conditions, such as asthma.

A “microarray analysis” of DNA showed no genetic changes eight hours after infection. But, after two days, about 6,500 genes had been affected, either with heightened activity or dampened activity.

The genes most affected by the presence of the virus were ones that make antiviral proteins and pro-inflammatory chemicals that contribute to airway inflammation, the researchers said.

Read: Learning How Viruses Evade the Immune SystemGene CarnivalBlack Raspberries Alter Hundreds of Genes Slowing CancerStudy Finds No Measurable Benefit to Flu Shots

Webcast: Engineering Education in the 21st Century

National Academy of Engineering President, William A. Wulf, discusses the future of engineering education. Very good quick overview (skip to 1m 45s point for start of the speech) – see links below for additional resources. From the speech:

  • “the practices of engineering has changed enormously in the last 20 years and engineering education has changed hardly at all.”
  • “It is a disgrace: about half the students who start in engineering do not finish in engineering… we are not weeding out the poor students we are turning off half the students with the way that we teach”
  • “engineering schools generally have not provided courses for the general liberal arts students but they must.”

view the rest of the talk

Related: Educating the Engineer of 2020: NAE ReportEducating Engineers for 2020 and Beyond by Charles VestWomen Choosing Other Fields Over Engineering and MathEducating Engineering GeeksLeah Jamieson on the Future of Engineering EducationHouse Testimony on Engineering Education

Electrifying a New Generation of Engineers

Electrifying a New Generation of Engineers

Ybarra’s K-12 education efforts began informally in 1993 while he was a newly arrived professor at Duke, toting lasers and other captivating bits of engineering equipment to local schools to drum up excitement for science and engineering and an array of programs grew from there.

Based on his growing awareness of the value of hands-on learning, Ybarra was longing for a way to help get more hands-on learning into the classroom. A few years later, in 1999, he was able to secure his first significant grant in the area. With support from the National Science Foundation Ybarra formalized his interactions with local schools by establishing a fellowship program that would put Duke engineering students in the classrooms to vastly expand the number of schools impacted.

To date, Ybarra’s programs have impacted more than 150,000 kids, and with so many programs now in place and spreading, that number increases by about 50,000 students per year. But personal stories, rather than numbers, are what Ybarra finds most gratifying. “When students contact me years later to tell me that the experiences they had in my programs inspired them to pursue a career in engineering or one of the sciences, it gives me a very deep sense of satisfaction.”

Related: Engineering K-PhDEngineering a Better Blood Alcohol SensorPromoting Science and EngineeringYale Cultivates Young ScientistsHigh School Students in USA, China and India

University Pay Rates

academic salary chart

Interesting chart from “Piled Higher and Deeper” by Jorge Cham showing median salaries for various university employees: grad students $17,784; Tenured professors ~$90,000; Football coaches: $1,057,305.

Related: Ninja ProfessorsS&P 500 CEOs are Engineering Graduates (and they make even more than football coaches)High Pay for Engineering Graduates (July 2007)Open Access Legislation 25 provosts from top universities

The Life of the Queen Bee

The Life of the Queen Bee

A common mistake amongst non apiarists is the assumed fact that the queen directly controls the hive. Effectively, however, her duty is as an egg making machine. She can lay bout two thousand eggs a day in the spring. This amounts to more than her own weight in eggs each day. Surrounded continuously by workers, she needs for nothing. They give her food and take her waste away. They will also collect a pheromone which they then distribute to stop workers from starting queen cells.

This very close up [follow link] of a queen bee shows one of its greatest – and smallest – enemies. The bee mite is an external parasite that attacks honey bees. It attaches itself to the bee’s body and sucks out its hemolymph. This is the blood analogue that is used by bees as they have an open circulatory system. Unfortunately the mite is more than just a pain in the neck. It can spread a host of viruses, including “Deformed Wing Virus” and the arrival of mites in a colony can often spell its demise. Scientists believe that the mite may contribute to the Colony Collapse Disorder (otherwise known as CCD) that is spreading throughout the United States.

Related: Scientists Search for Clues To Bee MysteryVirus Found to be One Likely Factor in Bee Colony Collapse DisorderRoyal Ant Genes

Monitor-Merrimac Memorial Bridge-Tunnel

photo of Monitor-Merrimac Memorial Bridge-Tunnel photo of Hampton Roads Virginia Bridge-Tunnel

Now that is some cool engineering: a bridge that becomes a tunnel. The Monitor-Merrimac Memorial Bridge-Tunnel is a 4.6 miles (7.4 km) crossing for Interstate 664 in Hampton Roads, Virginia, USA. It is a four-lane bridge-tunnel composed of bridges, trestles, man-made islands, and tunnels under a portion of the Hampton Roads harbor where the James, Nansemond, and Elizabeth Rivers come together in the southeastern portion of Virginia.

If you like this post, please look at our other popular posts, and consider adding our blog feed to your blog reader. Posts such as: Bacteriophages: The Most Common Life-Like Form on Earth, Robot Finds Lost Shoppers and Provides Directions and The Engineer That Made Your Cat a Photographer

It was completed in 1992, after 7 years of construction, at a cost $400 million, and it includes a four-lane tunnel that is 4,800 feet (1,463 m) long, two man-made portal islands, and 3.2 miles (5.1 km) of twin trestle.

Photos by Virginia Department of Transportation. Details from wikipedia. Google satellite view of the bridge-tunnel.

Related: Extreme EngineeringCool Falkirk Wheel Canal LiftThe Dynamics of Crowd Disasters: An Empirical StudyA ‘Chunnel’ for Spain and MoroccoSwiss dig world’s Longest Tunnel

Waste from Gut Bacteria Helps Host Control Weight

A single molecule in the intestinal wall, activated by the waste products from gut bacteria, plays a large role in controlling whether the host animals are lean or fatty, a research team, including scientists from UT Southwestern Medical Center, has found in a mouse study.

When activated, the molecule slows the movement of food through the intestine, allowing the animal to absorb more nutrients and thus gain weight. Without this signal, the animals weigh less.

The study shows that the host can use bacterial byproducts not only as a source of nutrients, but also as chemical signals to regulate body functions. It also points the way to a potential method of controlling weight, the researchers said.

“It’s quite possible that blocking this receptor molecule in the intestine might fight a certain kind of obesity by blocking absorption of energy from the gut,” said Dr. Masashi Yanagisawa, professor of molecular genetics at UT Southwestern and a senior co-author of the study, Proceedings of the National Academy of Sciences, open access: Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41.

Humans, like other animals, have a large and varied population of beneficial bacteria that live in the intestines. The bacteria break up large molecules that the host cannot digest. The host in turn absorbs many of the resulting small molecules for energy and nutrients.

In the Big Fat Lie I mentioned some related ideas:

It also makes perfect sense that our bodies evolved to store energy for worse times (and some of us have bodies better at doing that). Now we are in a new environment where (at least for many people alive today) finding enough calories is not going to be a problem so it would be nice if we could tell our bodies to get less efficient at storing fat

This research seems to be looking for a similar way to attack the obesity epidemic: reduce the efficiency of our bodies converting potential energy in the food we eat to energy we use or store. If we can make that part of the solution that will be nice. So far the reduction in our activity and increase in food intake have not been getting good results. And efforts to increase (from our current low levels) activity and reduce food intake have not been very effective.
Continue reading

Plants can Signal Microbial Friends for Help

When under attack, plants can signal microbial friends for help

Researchers at the University of Delaware have discovered that when the leaf of a plant is under attack by a pathogen, it can send out an S.O.S. to the roots for help, and the roots will respond by secreting an acid that brings beneficial bacteria to the rescue.

In a series of laboratory experiments, the scientists infected the leaves of the small flowering plant Arabidopsis thaliana with a pathogenic bacterium, Pseudomonas syringae. Within a few days, the leaves of the infected plants began yellowing and showing other symptoms of disease.

However, the infected plants whose roots had been inoculated with the beneficial microbe Bacillus subtilis were perfectly healthy. Farmers often add B. subtilis to the soil to boost plant immunity. It forms a protective biofilm around plant roots and also has antimicrobial properties, according to Bais.

Using molecular biological tools, the scientists detected the transmission of a long-distance signal, a “call for help,” from the leaves to the roots in the plants that had Bacillus in the soil. The roots responded by secreting a carbon-rich chemical–malic acid.

All plants biosynthesize malic acid, Bais explains, but only under specific conditions and for a specific purpose–in this case, the chemical was actively secreted to attract Bacillus. Magnified images of the roots and leaves showed the ratcheted-up defense response provided by the beneficial microorganisms.

“Plants can’t move from where they are, so the only way they can accrue good neighbors is through chemistry,” Bais notes.

Related: Researchers Learn What Sparks Plant GrowthSecret Life of MicrobesSymbiotic relationship between ants and bacteriaBacterium Living with High Level Radiation