Category Archives: Education

2008 MacArthur Fellows

photos of Kirsten Bomblies, Marin Soljacic, Rachel Wilson and Andrea Ghez

MacArthur Fellows receive $500,000 is support over 5 years with no strings attached. Unfortunately for me, I was passed over again. However, 25 people have been selected including

Kirsten Bomblies, Max Planck Institute for Developmental Biology, Tubingen, Germany. Plant Evolutionary Geneticist opening avenues into the mysteries of how new species originate through her explorations of incompatible hybrids as a mechanism for speciation in shared ecological niches.

Marin Soljacic, Massachusetts Institute of Technology, Cambridge, Massachusetts. Optical Physicist demonstrating both theoretically and experimentally that power can be transmitted wirelessly, potentially leading to a range of electrical devices that can operate without batteries or wall connections.

Rachel Wilson, Harvard Medical School, Boston, Massachusetts. Experimental Neurobiologist integrating electrophysiology, neuropharmacology, molecular genetics, and anatomy to measure the activity of neurons in the diminutive brain of the fruit fly.

Andrea Ghez, University of California Los Angeles, Los Angeles, California. Astrophysicist using novel, ground-based telescopic techniques to identify thousands of new star systems and illuminate the role of super-massive black holes in the evolution of galaxies.

Photos, from the MacArthur Foundation web site left to right Kirsten Bomblies, Marin Soljacic, Rachel Wilson and Andrea Ghez.

Related: 2006 MacArthur FellowsWireless Power2008 Draper Prize for Engineering2005-6 National Science and Technology Medals

$12.5 Million NSF For Educating High School Engineering Teachers

$12.5 Million National Science Foundation Grant

The University of Texas at Austin’s Cockrell School of Engineering, College of Natural Sciences and College of Education have been awarded $12.5 million by the National Science Foundation (NSF) to prepare educators to teach engineering to Texas high-school students.

The UTeachEngineering program targets future and current teachers, providing multiple avenues to prepare them to teach high school engineering. University faculty will use half of the five-year grant funding for course development, lab development and salaries. The other half of the grant will provide stipends, scholarships and fellowships to students and teachers working toward engineering teaching certification.

Current teachers will benefit from two curricula developed through the grant: a six-week Engineering Summer Institute for Teachers and a UTeach Master of Arts in Science and Engineering Education, which takes place over three summers. The curriculum for prospective teachers will target undergraduate students in engineering and the natural sciences, and lead to a bachelor’s degree in a scientific or engineering field as well as dual teaching certification in science and engineering. Addressing the need for trained engineering teachers is especially crucial in Texas because of a new law that requires high school graduates starting in 2011 to complete four years of science. One year can be a course in engineering.

Related: Engineering Resources for K-12 TeachersLeadership Initiatives for Teaching and TechnologyEducation Resources for Science and EngineeringIoannis Miaoulis on k-12 Engineering EducationAlumni Return to Redesign High School Engineering Classes

Incident in LHC Sector 34

Incident in LHC sector 34

During commissioning (without beam) of the final LHC sector (sector 34) at high current for operation at 5 TeV, an incident occurred at mid-day on Friday 19 September resulting in a large helium leak into the tunnel. Preliminary investigations indicate that the most likely cause of the problem was a faulty electrical connection between two magnets, which probably melted at high current leading to mechanical failure. CERN ’s strict safety regulations ensured that at no time was there any risk to people.

A full investigation is underway, but it is already clear that the sector will have to be warmed up for repairs to take place. This implies a minimum of two months down time for LHC operation. For the same fault, not uncommon in a normally conducting machine, the repair time would be a matter of days.

Related: CERN Pressure Test FailureAt the Heart of All MatterNew Yorker on CERN’s Large Hadron ColliderWhat Makes Scientists Different 🙂

Toyota Engineering Development Process

Kenji Hiranabe talks about Toyota’s development process (webcast). Kenji shares a presentation he attended earlier this year by Nobuaki Katayama, a former Chief Engineer at Toyota, and the lessons he learned from him.

The webcast takes awhile to get going. If you are impatient you might want to start at the 6 minute mark. Some thoughts from the talk:

  • The Voice of the Customer is diffuse. A strong concept (for a project – new car for example) is very important to focus thought, listening to voice of the customer is important but must use strong concept to avoid losing focus (due to diffuse customer feedback).
  • Honest face to face communication is important. Bad news first – present bad news first [don’t try to hide bad news – my thoughts in brackets, John Hunter].
  • Everyone must think about cost reduction, many efforts add up to big impact [the importance of reducing waste everywhere].
  • benchmark, not to copy others, but to learn from what others do well.

The webcast includes a nice (though short) discussion of agile management in software development and lean manufacturing (the different situation of manufacturing versus software development). Kenji Hiranabe has also translated several agile and lean books into Japanese including Implementing Lean Software Development.

Related: Kenji Hiranabe’s blogMarissa Mayer Webcast on Google InnovationHonda EngineeringEngineering Innovation in Manufacturing and the Economy

Illinois and Olin Aim to Transform Engineering Education

It appears Illinois is preparing to attempt to apply some of the idea piloted at Olin on a larger scale. It will be very interesting to see what happens. Illinois Partners with Olin College to Transform Engineering Education

“Illinois is to be commended for embarking on a serious initiative to demonstrate scalable innovation at a large land-grant school,” Miller stated. “Olin has pioneered many innovations in its multi-disciplinary, project-based engineering curriculum, but we still don’t know how widely applicable these reforms are. Through this partnership, Olin and Illinois will be able to explore how to diffuse innovation more broadly throughout the engineering education community. The partnership is a true collaboration, offering Illinois access to Olin’s unique educational Petri dish, and offering faculty and students at Olin special access to Illinois’ quality researchers and facilities, recognized as among the best in the world.”

As part of this effort Illinois seems to be using a new something (I am not sure what it should be called): iFoundry. Illinois Foundry for Innovation in Engineering Education, is an interdepartmental curriculum incubator in the College of Engineering at the University of Illinois designed to pilot principled change while respecting faculty governance.

Related: Innovative Science and Engineering Higher Education Olin Engineering Education ExperimentNational Science Board Report on Improving Engineering EducationImproving Engineering Education the Olin WayLeah Jamieson on the Future of Engineering Education

Seventh-grader’s Solar Cell Research

photo of William Yuan

Seventh-grader shines with solar cell research

Yuan worked on his project for the past two years with the encouragement of his science teacher Susan Duncan; support of his parents Gang Yuan and Zhiming Mei; and counsel of professional mentors Professor Chunfei Li of Portland State University’s Center for Nanofabrication and Electron Microscopy, Fred Li of Applied Materials Inc. and Professor Shaofan Li of the Department of Civil Engineering at the University of California – Berkeley.

“He is our youngest fellow in science that we’ve ever had,” Moessner said. “He is really spectacular. “His project will really make a difference in advancing the technology of solar cells. You would never know he’s 12 looking at the quality of his work.”

Beaverton boy lauded for solar cell invention

there have been many questions about the research by William Yuan. Some have even questioned whether he copied the research of others and claimed it as his own. That is far from the case. Yuan fully documented all of his sources and never tried to imply that he invented the 3D solar cell. He did create a new type of 3D solar cell that works for visible and UV light

William Yuan was awarded a 2008 Davidson Fellow award

In his project, “High Efficient 3-Dimensional Nanotube Solar Cell for Visible and UV Light,” William invented a novel solar panel that enables light absorption from visible to ultraviolet light. He designed carbon nanotubes to overcome the barriers of electron movement, doubling the light-electricity conversion efficiency. William also developed a model for solar towers and a computer program to simulate and optimize the tower parameters. His optimized design provides 500 times more light absorption than commercially-available solar cells and nine times more than the cutting-edge, three-dimensional solar cell.

Related: Solar Thermal in Desert, to Beat Coal by 2020Super Soaker Inventor Aims to Cut Solar Costs in HalfEngineering Student Contest Winners Design Artificial Limbposts on engineers

Goldbergian Flash Fits Rube Goldberg Web Site

Intentionally, I hope, the Rube Goldberg Machine Contest web site illustrates how to use needlessly complex engineering to design a tool that fails to follow sensible engineering guidelines. Rather than aiming for well designed usable products, the desire is to produce a machine that sort-of complies with the requirements but in a extremely foolish, convoluted way. Obviously it would be much more sensible to design that web site with html and it would just work simply, easily and quickly for everyone. But flash is the perfect tool to use if you want to promote Goldbergian thinking.

The web site, for example, does display content to a web browser. If that web browser has a flash plugin installed and it is the proper type. And sure the conventions of the web don’t work in this crippled environment but who cares about that when designing Goldbergian web sites. Of course if you actually want to design a good web site such choices would be – lets see, oh yeah, lame. I could link to the contest information – but in good Flash Goldbergian fashion that is not possible with the non-website website they have.

Related: Rube Goldberg Machine ContestRube Goldberg Devices from JapanNASA You Have a Problem340 Years of Royal Society Journals OnlineNSF Engineering Division is ReorganizationHow to Design for the Web

15 Photovoltaics Solar Power Innovations

15 Photovoltaics Solar Power Innovations You Must See

Researchers at McMaster University (coolest name ever) have succeeded in ‘growing’ light-absorbing nanowires made of high-performance photovoltaic materials on carbon-nanotube fabric. In other words, hairy solar panels.

The aim is to produce flexible, affordable solar cells that, within five years, will achieve a conversion efficiency of 20%. Longer term, it’s theoretically possible to achieve 40% efficiency!

while looking for a solution, researchers noticed that moths have very non-reflective eyes (“most likely an evolutionary defense against nocturnal predators”). The moth-eye process creates panels that reflect less than 2% of light. That’s a vast improvement over the 35 to 40% reflection rate seen without the anti-reflection coating layers.

Some experts are speculating that First Solar might beat over 80 competitors to achieve manufacturing costs low enough to market solar panels at less than $1 per Watt, the target considered necessary for solar to compete with coal-burning electricity on the grid.

Related: Solar Power: Economics, Government and TechnologyCost Efficient Solar Dish by Studentsposts on solar energyLarge-Scale, Cheap Solar Electricity

Asymmetrical Brains Aid Multi-tasking

Asymmetrical brains help fish (and us) to multi-task:

In the animal world, the ability to multi-task is a matter of life and death. Many species must be ever-watchful for food, while simultaneously looking out for predators who would view them in the same way Like too many open applications that slow down a computer, these multiple tasks compete for the brain’s finite resources. Those who survive life’s challenges are those with an edge at efficiently dealing with multiple demands.

One way of doing this is to use parallel processing – to delegate different parts of a problem to different pieces of hardware. This is exactly the situation found in the human brain, with two asymmetric hemispheres associated with different mental abilities. And this ‘lateralisation’ is not unique to us, but seems to be present in all back-boned animals, from fish to apes. An explanation for this asymmetry now becomes obvious – it may allow animals to multi-task, acting as a sort of cerebral division of labour.

In these cases, regardless of parallel processing power, an asymmetric brain is clearly a disadvantage. The two scientists believe that the tipping point between these pros and cons comes when an animal has to perform difficult mental tasks.

Other studies have shown that asymmetrical brains endow wild chimpanzees with superior termite-fishing skills, and (equally wild) human children with better mathematical and verbal abilities than their classmates. It may be that over the course of evolution, our brain’s halves started to work together more effectively as they became more different and specialised. It is ironic and sad then, that the opposite seems to hold true for the divergence of human cultures.

Related: The Brain is Wired to Mull Over DecisionsMapping Where Brains Store Similar InformationThe Siren Song of MultitaskingNo Sleep, No New Brain Cells