Category Archives: Students

Items for students and others, interested in learning about science and engineering and the application of science in our lives. We post many of the general interest items here.

Mentors Prepare Women for Construction Career

photo of Heather Cavitt

Mentors prepare women for construction career

Now Cavitt and other women in the construction school, a part of ASU’s Ira A. Fulton School of Engineering, can give themselves another advantage: Learning from pioneering women who have already risen to leadership positions in the business.

The school recently established its Advancing Women in Construction program, a key part of which is a mentorship project. More than 70 women – and several men – in the construction industry in the greater Phoenix area have signed on to mentor female students and provide them an inside look at life in the industry.

plan to increase female enrollment from less than 15 percent of total enrollment to 30 percent – or about 200 female students – within five years.

Cavitt says her favorite things about the school’s construction management program are the opportunities to learn beyond the classroom, such as internships and building-project competitions between construction students at other universities. She expects the mentoring program to add significantly to the value of her college education. “I’m excited to learn about the real-world business of construction from women who have been successful at it for many years,” she says.

photo: School of Construction student Heather Cavitt (front) will gain from the experience of Crystal Slawson (center), president of Phoenix Pipelines and Natalie Palmer, the company’s project coordinator, through the school’s Advancing Women in Construction mentorship program.

Related: Beloit College: Girls and Women in ScienceWomen Choosing Other Fields Over Engineering and MathWomen Working in ScienceFixing Engineering’s Gender Gap

Silk E.coli Sensors

“Edible Optics” Could Make Food Safer

Scientists at Tufts University’s School of Engineering have demonstrated for the first time that it is possible to design such “living” optical elements that could enable an entirely new class of sensors. These sensors would combine sophisticated nanoscale optics with biological readout functions, be biocompatible and biodegradable, and be manufactured and stored at room temperatures without use of toxic chemicals. The Tufts team used fibers from silkworms to develop the platform devices.

The possibility of integrating optical readout and biological function in a single biocompatible device unconstrained by these limitations is tantalizing. Silk optics has captured the interest of the Defense Department, which has funded and been instrumental in enabling rapid progress on the topic. The Defense Advanced Research Projects Agency (DARPA) awarded Tufts a research contract in 2007 and is funding Tufts and others on groundbreaking projects that could someday result in biodegradable optical sensing communications technology.

To form the devices, Tufts scientists boiled cocoons of the Bombyx mori silkworm in a water solution and extracted the glue-like sericin proteins. The purified silk protein solution was ultimately poured onto negative molds of ruled and holographic diffraction gratings with spacing as fine as 3600 grooves/mm.

The Tufts team embedded three very different biological agents in the silk solution: a protein (hemoglobin), an enzyme (horseradish peroxidase) and an organic pH indicator (phenol red). In the hardened silk optical element, all three agents maintained their activity for long periods when simply stored on a shelf. “We have optical devices embedded with enzymes that are still active after almost a year of storage at room temperature.

Related: E. Coli IndividualityScience Fair Project on Bacterial Growth on Packaged SaladsProtecting the Food Supplyposts on food

59 MPG Toyota iQ Diesel Available in Europe

image of seating in the toyota iQ

59 MPG Toyota iQ On Sale In Europe, US Plans Unclear

With lower carbon dioxide emissions than the Prius — around 159 grams of CO2 emitted per mile by the 1.0 liter gas engine and 166 g/mile for the diesel version — not only does the iQ deliver on fuel economy, but its straight-up conventional engine is a pollution winner too.

At just about 9.8 feet long, 5.5 feet wide and 4.9 feet tall, Toyota certainly has pulled of a near engineering miracle with the amount of stuff they’ve crammed into this tiny vehicle. Toyota claims the iQ can fit 3 adults and 1 child “comfortably.”

Toyota expects to sell about 80,000 of them a year in Europe.

I own some Toyota stock (and bought a bit more recently) based on their excellent management and production system and the results they have achieved (so I pay attention to what they are doing – plus I own them because they do things I see as wise so it is a self reinforcing dynamic). Business week recently wrote about Ford’s 65 mpg Diesel Car the U.S. Can’t Have.

I owned Ford stock back when they were adopting Deming based management principles but when they dropped those to pursue short sighted goals and poor management practices I sold and bought Toyota (turned out to be a very wise decision – my mistake was holding Ford too long hoping they would realize their mistake).

Related: Toyota Engineering Development ProcessToyota Cultivating Engineering TalentToyota Winglet, Personal TransportationToyota iUnitToyota iQ media kit (lots of details)

The Rush to Save Timbuktu’s Crumbling Manuscripts

The Rush to Save Timbuktu’s Crumbling Manuscripts

Fabled Timbuktu, once the site of the world’s southernmost Islamic university, harbors thousands upon thousands of long-forgotten manuscripts. A dozen academic instutions from around the world are now working frantically to save and evaluate the crumbling documents.

The Ahmed Baba Library alone contains more than 20,000 manuscripts, including works on herbal medicine and mathematics, yellowed volumes of poetry, music and Islamic law. Some are adorned with gilded letters, while others are written in the language of the Tuareg tribes. The contents remain a mystery.

Manuscript hunters are now scouring the environs of Timbuktu, descending into dark, clay basements and climbing up into attics. Twenty-four family-owned collections have already been discovered in the area. Most of the works stem from the late Middle Ages, when Timbuktu was an important crossroads for caravans.

Archaeologists have shown that an incredible system of underground canals up to 20,000 kilometers (12,422 miles) long once existed at Wadi al-Hayat in Libya. Thanks to such hydraulic marvels, the desert blossomed and crops sprouted in the fields of the Tuareg.

Related: digital library of scholarly resources from and about AfricaAfrican Union Science Meeting

Virgin Birth for Another Shark Species

Virgin shark birth in Virginia

The first time it happened, scientists thought it might be a fluke. A female hammerhead shark residing at a zoo in Omaha, Neb., had not been in contact with male sharks for at least three years and yet experienced a “virgin birth.” She delivered a single pup.

But it has happened again, according to today’s issue of the Journal of Fish Biology. This time, a blacktip shark… had spent nearly her entire eight years at either the Virginia Aquarium without any male companionship from her kind.

Related: No sex for all-girl fish speciesBdelloid Rotifers Abandoned Sex 100 Million Years Agoposts on the science and life

Science Postercasts

I wrote about SciVee, over a year ago, saying I thought they could become a valuable resource. It has been taking longer to really get going than I thought it would but this new feature, Postercasts, is great. I am glad to see SciVee living up to my high expectation. Keep up the great work SciVee. The experience can still use improvement but this is a great start.

They have provided a tutorial on: How to Synchronize my Poster to my Video. I hope some of our readers try this out.

via: Interactive Virtual Posters

Related: Engineering TVScience WebcastsMagnetic Movie

Keeping Invassive Plants Out of Your Garden

Tending the Garden, Sparing the Ecosystem

The plants and animals that naturally exist in a place evolved together, adapted together and coexist for mutual benefit. Birds, insects and other animals help pollinate plants and distribute seeds. Plants provide food and shelter for the animals.

When you start adding exotic or nonnative species, or subtracting native species, you disrupt the balance. Native creatures may not be able to get nourishment from nonnative plants, and indigenous plants may not be able to compete with invasive alien plants.

The native plant society strongly recommends physical methods for getting rid of plants, as opposed to using herbicides. But where plant stands are large or hard to control by clipping or pulling, chemicals may well be the last resort.

Related: Invasive Plants: Tamariskarticles on invasive plantsInvasive Species BlogBallast-free Ships (to block invasive aquatic species)

Toyota Cultivating Engineering Talent

Toyota has a knack for cultivating engineering talent

Toyota now has more than 1,000 York Township employees dedicated to conducting engineering services on vehicles for the North American market. Early on in its expansion project, the Japanese automaker displayed a canny understanding of how to cultivate talent and acquire engineers fresh out of college.

Toyota established a two-year internship program for recent engineering graduates at schools like the University of Michigan, Michigan State University, Lawrence Technological University and the University of Wisconsin. At the end of the two-year period, the automaker and the employee reach a mutual decision about whether the employee should continue working there.

Bruce Brownlee, senior executive administrator for external affairs for the Toyota Planning Center at the Toyota Technical Center, has said the company generated a “large pipeline” for engineering talent by leveraging the internship program.

Related: Engineering InternshipsToyota Engineering Development ProcessToyota RobotsToyota k-12 Science GrantsToyota Production System (TPS) management blog posts

Computer Chips to Catch Cactus Thieves

Feds to use computer chips to foil cactus thieves

Anyone thinking of swiping a stately saguaro cactus from the desert could soon be hauling off more than just a giant plant. National Park Service officials plan to imbed microchips in Arizona’s signature plant to protect them from thieves who rip them from the desert to sell them to landscapers, nurseries and homeowners.

The primary objective is deterrence, but the chips also will aid in tracking down and identifying stolen saguaros, said Bob Love, chief ranger at southern Arizona’s Saguaro National Park.

Saguaros are unique to the Sonoran Desert, 120,000 square miles covering portions of Arizona, California and the northern Mexican states of Baja California and Sonora. They’re majestic giants that can grow to heights of 50 feet, sprout gaggles of arms and weigh several tons. They can take 50 years to flower and 70 years before sprouting an arm.

Related: Fighting Elephant Poaching With ScienceMobile Phone-based Vehicle Anti-theft SystemNatural Park Visits Declining

The Nobel Prize in Chemistry 2008

The Nobel Prize in Chemistry 2008 is evenly shared by Osamu Shimomura, Boston University Medical School, USA; Martin Chalfie, Columbia University, New York, USA and Roger Y. Tsien, University of California, San Diego, USA for discovery and work with glowing green fluorescent protein.

The remarkable brightly glowing green fluorescent protein, GFP, was first observed in the beautiful jellyfish, Aequorea victoria in 1962. Since then, this protein has become one of the most important tools used in contemporary bioscience. With the aid of GFP, researchers have developed ways to watch processes that were previously invisible, such as the development of nerve cells in the brain or how cancer cells spread.

Tens of thousands of different proteins reside in a living organism, controlling important chemical processes in minute detail. If this protein machinery malfunctions, illness and disease often follow. That is why it has been imperative for bioscience to map the role of different proteins in the body.

This year’s Nobel Prize in Chemistry rewards the initial discovery of GFP and a series of important developments which have led to its use as a tagging tool in bioscience. By using DNA technology, researchers can now connect GFP to other interesting, but otherwise invisible, proteins. This glowing marker allows them to watch the movements, positions and interactions of the tagged proteins.

Researchers can also follow the fate of various cells with the help of GFP: nerve cell damage during Alzheimer’s disease or how insulin-producing beta cells are created in the pancreas of a growing embryo. In one spectacular experiment, researchers succeeded in tagging different nerve cells in the brain of a mouse with a kaleidoscope of colors.


Osamu Shimomura
, a Japanese citizen, was born 1928 in Kyoto, Japan. He received his Ph.D. in organic chemistry 1960 from Nagoya University, Japan. first isolated GFP from the jellyfish Aequorea victoria, which drifts with the currents off the west coast of North America. He discovered that this protein glowed bright green under ultraviolet light.

Martin Chalfie demonstrated the value of GFP as a luminous genetic tag for various biological phenomena. In one of his first experiments, he coloured six individual cells in the transparent roundworm Caenorhabditis elegans with the aid of GFP.

Roger Y. Tsien contributed to our general understanding of how GFP fluoresces. He also extended the colour palette beyond green allowing researchers to give various proteins and cells different colours. This enables scientists to follow several different biological processes at the same time.

Related: 2007 Nobel Prize in ChemistryNobel Laureate Initiates Symposia for Student ScientistsNobel Prize in Chemistry (2006)Webcasts by Chemistry and Physics Nobel Laureates