Category Archives: Students

Items for students and others, interested in learning about science and engineering and the application of science in our lives. We post many of the general interest items here.

Algorithmic Self-Assembly

Paul Rothemund, scientist at Cal Tech, provides a interesting look at DNA folding and DNA based algorithmic self-assembly. In the talk he shows the promise ahead for using biological building blocks using DNA origami — to create tiny machines that assemble themselves from a set of instructions.

Algorithmic Self-Assembly of DNA Sierpinski Triangles, PLoS paper.

I posted a few months ago about how you can participate in the protein folding, with the Protein Folding Game.

Related: Viruses and What is LifeDNA Seen Through the Eyes of a CoderSynthesizing a Genome from ScratchEvidence of Short DNA Segment Self AssemblyScientists discover new class of RNA

Autonomous Helicopters Teach Themselves to Fly

photo of Stanford Autonomous Learning Helicopters

Stanford’s “autonomous” helicopters teach themselves to fly

Stanford computer scientists have developed an artificial intelligence system that enables robotic helicopters to teach themselves to fly difficult stunts by watching other helicopters perform the same maneuvers.

The dazzling airshow is an important demonstration of “apprenticeship learning,” in which robots learn by observing an expert, rather than by having software engineers peck away at their keyboards in an attempt to write instructions from scratch.

It might seem that an autonomous helicopter could fly stunts by simply replaying the exact finger movements of an expert pilot using the joy sticks on the helicopter’s remote controller. That approach, however, is doomed to failure because of uncontrollable variables such as gusting winds.

Very cool. Related: MIT’s Autonomous Cooperating Flying VehiclesThe sub-$1,000 UAV Project6 Inch Bat PlaneKayak Robots

Saving Lives with Smarter Hurricane Evacuations

A sign indicating a hurricane evacuation route near Boca Raton, Florida. Photo / Wikimedia Commons

Software developed by a MIT student is aiding emergency officials as they decide on evacuation plans:
Saving lives through smarter hurricane evacuations

Michael Metzger’s software tool, created as part of the research for his PhD dissertation, could allow emergency managers to better decide early on whether and when to order evacuations — and, crucially, to do so more efficiently by clearing out people in stages. The tool could also help planners optimize the location of relief supplies before a hurricane hits.

“All in all, this is a complex balancing act,” Metzger says.

The concept of evacuating an area in stages — focusing on different categories of people rather than different geographical locations — is one of the major innovations to come out of Metzger’s work, since congestion on evacuation routes has been a significant problem in some cases, such as hurricanes Katrina and Rita. Metzger suggests that, for example, the elderly might be evacuated first, followed by tourists, families with children, and then the remaining population. The determination of the specific categories and their sequence could be determined based on the demographics of the particular area.

By spacing out the evacuation of different groups over a period of about two days, he says, the process would be more efficient, while many traditional systems of evacuating a given location all at once can and have caused serious congestion problems.
….
Other factors that could help to make evacuations more effective, he says, include better planning in the preparation of places for evacuees to go to, making sure buses and other transportation are ready to transport people, and preparing supplies in advance at those locations.

Related: Engineering the Boarding of AirplanesMIT Hosts Student Vehicle Design SummitLighting in Slow Motion

MythBuster: 3 Ways to Fix USA Science Education

MythBuster Adam Savage: 3 Ways to Fix U.S. Science Education

Let students get their hands dirty.
It’s really difficult to absorb things just by being told about them—I know I don’t learn well that way. If students could get their hands dirty in science class they’d be more likely to internalize information. You can lecture about the surface tension of water, but it’s not as effective as conducting an experiment with a needle and a single beam balance. Jamie and I are in touch with a lot of teachers from industrial engineering programs, and one of them told us he thinks our show has helped shift the emphasis from the strictly theoretical to a more hands-on approach.

2. Yes, spend more money on science.

3. Celebrate mistakes.
A good scientist will tell you that being wrong can be just as interesting as being right. The same holds for our show. We love hearing from fans who challenge our conclusions—especially kids.

Related: Report on K-12 Science Education in USA (2006)posts on science educationThe Economic Consequences of Investing in Science EducationMiddle School EngineersLego LearningThe Importance of Science Education – Science Toys You Can Make With Your Kids

Anthropologists Find New Type of Urbanism in Amazon Jungles

Anthropologists Find New Type of Urbanism in Amazon Jungles

Recently-discovered Amazonian settlements could be a new type of metropolis, unseen elsewhere in the world and hidden until recently in the Kuikuro jungle, say anthropologists.

Revealed by overgrown earthworks, the 100 square-mile urban units consist of clusters of interconnected villages ranging from 50-150 acres in size. The town-nodes were arranged along a highly-regular pattern of roads built around a central plaza about 500 feet across. The cities appear to have been at their height between the 13th and 17th centuries.

“No single Xingu settlement merits the term ‘city.’ But what do you do with a core of five settlements are few kilometers away from each other?” Michael Heckenberger, a University of Florida anthropologist currently in Brazil, told Science. “A fast walk from one to another would take you 15 minutes, maximum.”

Related: Aztec MathSurfing a Wave for 12 kmTraffic Congestion and a Non-Solution‘Hobbit’ human is a new species

Black Raspberries Alter Hundreds of Genes Slowing Cancer

Black Raspberries Slow Cancer by Alter Hundreds of Genes

Researchers at the Ohio State University Comprehensive Cancer Center examined the effect of freeze-dried black raspberries on genes altered by a chemical carcinogen in an animal model of esophageal cancer

“We have clearly shown that berries, which contain a variety of anticancer compounds, have a genome-wide effect on the expression of genes involved in cancer development,” says principal investigator Gary D. Stoner

Stoner notes that black raspberries have vitamins, minerals, phenols and phytosterols, many of which individually are known to prevent cancer in animals. “Freeze drying the berries concentrates these elements about ten times, giving us a power pack of chemoprevention agents that can influence the different signaling pathways that are deregulated in cancer,” he says.

Their analyses included measuring the activity, or expression levels, of 41,000 genes. In the carcinogen-treated animals, 2,261 of these genes showed changes in activity of 50 percent or higher.

Pretty cool stuff.

Related: DNA Passed to Descendants Changed by Your LifeCancer Deaths Increasing, Death Rate DecreasingPeople Have More Bacterial Cells than Human CellsEat food. Not too much. Mostly plants.

General Biology Berkeley Course Webcast

General Biology Course at University of California – Berkeley, Fall 2007. Instructors John Forte, R Fischer and R Malkin. “General introduction to cell structure and function, molecular and organism genetics, animal development, form and function. Intended for biological sciences majors, but open to all qualified students.” A great service from Berkeley with video and audio… Topics include: Macromolecules structure and function, How cells function-an introduction to cellular metabolism and biological catalysts, Microbes – Viruses, Bacteria, Plasmids, Transposons and Homeostasis: The body’s defenses.

Related: Science and Engineering Webcast DirectoryHarvard Course: Understanding Computers and the InternetBerkeley and MIT courses onlineArizona State Science Studio PodcastsGoogle Tech Talks

Wireless Power

   
An end to spaghetti power cables by Maggie Shiels, BBC News

Mr Rattner envisaged a scenario where a laptop’s battery could be recharged when the machine gets within several feet of a transmit resonator which could be embedded in tables, work surfaces, picture frames and even behind walls.

Intel’s technology relies on an idea called magnetic induction. It is a principle similar to the way a trained singer can shatter a glass using their voice; the glass absorbs acoustic energy at its natural frequency. At the wall socket, power is put into magnetic fields at a transmitting resonator – basically an antenna. The receiving resonator is tuned to efficiently absorb energy from the magnetic field, whereas nearby objects do not.

Intel’s demonstration has built on work done originally by Marin Soljacic, a physicist at Massachusetts Institute of Technology (MIT). At the Intel Developer Forum in San Francisco, researcher Alanson Sample showed how to make a 60-watt light bulb glow from an energy source three feet away. This was achieved with relatively high efficiency, only losing a quarter of the energy it started with.

Don’t expect to see this available commercially this year, they estimate it is at least 5 years away. Though this is not university and business collaboration in the sense they are working together, it is in the sense that Intel is building upon the work MIT did. See other posts on university and business collaboration.

Related: Water From AirEngineers Save EnergyMicrochip Cooling Innovation

Patent Gridlock is Blocking Developing Lifesaving Drugs

How patent gridlock is blocking the development of lifesaving drugs by Michael Heller, Forbes

Since a 1980 Supreme Court decision allowing patents on living organisms, 40,000 dna-related patents have been granted. Now picture a drug developer walking into an auditorium filled with dozens of owners of the biotech patents needed to create a potential lifesaving cure. Unless the drugmaker can strike a deal with every person in the room, the new drug won’t be developed.

Nicholas Naclerio, who used to head the BioChip Division at Motorola , told Scientific American, “If we want to make a medical diagnostic with 40 genes on it, and 20 companies hold patents on those genes, we may have a big problem.”

And it’s not just drugs we’re losing. Today anything high tech–banking, semiconductors, software, telecom–demands the assembly of innumerable patents. Innovation has moved on, but we’re stuck with old-style ownership that’s easy to fragment and hard to put together. This debacle’s only upside is that assembling fragmented property is one of the great entrepreneurial and political opportunities of our era.

This is a critical problem I have written about before. The broken patent system is a serious problem that needs to be fixed.

Related: The Effects of Patenting on SciencePatent Policy Harming USA, and the worldPatenting Life is a Bad IdeaThe Differences Between Culture and CodeInnovation and Creative CommonsThe Value of the Public DomainThe Patent System Needs to be Significantly ImprovedAre Software Patents Evil?