Category Archives: Students

Items for students and others, interested in learning about science and engineering and the application of science in our lives. We post many of the general interest items here.

Engineering Education Online Seminars

The Center for Engineering Educational Outreach has an engineering education seminar series that is available online: register for online broadcasts of all the remaining Tufts CEEO Seminar Series speakers for Spring 2008.

Some excellent seminars allow online participants are able to submit questions to the speaker via chat at the end of the seminar (time permitting). “Due to resource limitations, CEEO Spring 2008 Seminar Series are not currently being archived for later viewing or download.” That is a shame shame. They should post them on You Tube or SciVee or something. The advantage of asynchronous distribution of valuable content should be provided given the available tools today.

Seminars are at 4pm unless otherwise noted
Monday, Mar. 31 – The Robotic Fly: Innovations in very small robots. Rob Wood, Harvard University

Wednesday, April 9 (special time – 1:30 – in Nelson Auditorium) – Supporting Innovation: Engineers and Policy – Bill Wulf, University of Virginia.

Tuesday April 22 – LEGO Education: Looking Forward – Jens Maibom Vice President, the LEGO Group & General Manager, LEGO Education.

Monday, Apr 28 – Investigating Knowledge Fluency in Engineering Design– Ann McKenna, Northwestern University

Monday, May 12 – LEGO Americas – What does the future bring?- Soren Torp Laursen – President, LEGO Systems

Monday, June 2 – Conceptual Continuity: Using informal science literacies to promote students Science Learning – Bryan Brown, Stanford University,

Science Serving Society – Speech Australian Minister for Innovation

Kim Carr, Minister for Innovation, Australia, speech to the National Press Club of Australia: Science meets Parliament

When societies invest in science, they are investing in their own future. They are entitled to expect a fair return on that investment.

They’re entitled to know we are using the country’s intellectual and technical capacity to deliver outcomes that matter to them – stronger communities, more good jobs, a cleaner environment, better public services, a richer culture, greater security for themselves and their children. Everybody here knows the rules of professional scientific conduct – think independently, put emotion aside, reject received authority, be faithful to the evidence, communicate openly.

These are good rules – rules I wholeheartedly endorse – but there’s one more I’d like to add – remember your humanity. Remember you’re part of a wider society – one that you have a special ability and therefore a special duty to serve. This doesn’t just apply in the physical sciences, but in the humanities and social sciences as well. When I say science I mean knowledge in all its forms.

Related: Engineering Economic BenefitsAuthors of Scientific Articles by CountryEconomic Strength Through Technology LeadershipScience and Engineering in Global EconomicsAussies Look to Finnish Innovation ModelInvest in Science for a Strong Economy
Continue reading

6 Inch Bat Plane

image of bat plane

A six-inch robotic spy plane modeled after a bat would gather data from sights, sounds and smells in urban combat zones and transmit information back to a soldier in real time.

That’s the Army’s concept, and it has awarded the University of Michigan College of Engineering a five-year, $10-million grant to help make it happen. The grant establishes the U-M Center for Objective Microelectronics and Biomimetic Advanced Technology, called COM-BAT for short. The grant includes an option to renew for an additional five years and $12.5 million.

U-M researchers will focus on the microelectronics. They will develop sensors, communication tools and batteries for this micro-aerial vehicle that’s been dubbed “the bat.” Engineers envision tiny cameras for stereo vision, an array of mini microphones that could home in on sounds from different directions, and small detectors for nuclear radiation and poisonous gases.

Low-power miniaturized radar and a very sensitive navigation system would help the bat find its way at night. Energy scavenging from solar, wind, vibration and other sources would recharge the bat’s lithium battery. The aircraft would use radio to send signals back to troops.

“These are all concepts, and many of them are the next generation of devices we have already developed. We’re trying to push the edge of our technologies to achieve functionality that was not possible before,” said Kamal Sarabandi, the COM-BAT director and a professor in the U-M Department of Electrical Engineering and Computer Science.

COM-BAT also involves the University of California at Berkeley and the University of New Mexico. It is one of four centers the Army launched as a collaborative effort among industry, academia and the Army Research Laboratory to work toward this vision of a small, robotic aircraft that could sense and communicate. Each of the four centers is charged with developing a different subsystem of the bat, a self-directed sensor inspired by the real thing.
Continue reading

Students Create “Disappearing” Nail Polish

‘Vanishing’ colour gives schoolgirls chance to beat ban on nail varnish

A nail varnish that “vanishes” has been developed by a group of school pupils – offering girls the chance to beat bans on makeup. The nail colour is a vivid red outdoors – but inside it transforms to a much paler shade which can hardly be seen.

The dramatic change is caused by a chemical reaction between the varnish and the ultraviolet light in natural sunlight. The polish was devised by pupils from Albion High School, Salford, who thought the “vanishing” colour may help them beat the school’s ban on nail polish.

They came up with the idea while working on an enterprise project with Paul Haywood and Sam Ingleson from Salford University’s school of art and design.

Not exactly what I would create but it is great to see students using scientific thought to find solutions they desire.

Related: The Chemistry of Hair ColoringEngineering Students Design Innovative Hand DryerStudent designs a baby high chairEngineering Student Contest Winners Design Artificial Limb

Scientific American Frontiers Webcasts

All shows of the PBS TV show, Scientific American Frontiers are available online. The shows feature Alan Alda exploring a wide range of scientific ideas. Specific information for teachers if provided for each show. Shows include:

  • Going Deep – “In 1977, scientists aboard Alvin were exploring the Galapagos Rift in the Pacific Ocean when they made one of the most important discoveries in modern biology. Hydrothermal vents are underwater volcanoes erupting magma-heated, mineral-rich water out of cracks on the seafloor thousands of feet beneath the surface. Despite the enormous pressure and total darkness, the vents were found to support an astonishing array of animal life.”
  • The Dark Side of the Universe – Dark matter, dark energy and the universe.
  • Natural Born Robots – “The next generation of robots swim like fish, play soccer and even experience emotions.”
  • Science and Sports – “Science enables people to run quicker, climb higher, hit farther, and sail faster in this sports special.”

Related: BBC In Our Time Science Podcast ArchiveCurious Cat Science Webcast DirectoryOnline Science Resources for TeachersUC-Berkeley Course Videos OnlineScienceLive video archive from Cambridge University

Giant Star Fish and More in Antarctica

photo of giant starfish

Photo by John Mitchell, New Zealand’s National Institute of Water and Atmospheric Research. Read a great deal about the New Zealand Census of Antarctic Marine Life project: 26 scientists and 18 crew took a 50-day voyage aboard RV Tangaroa in February-March 2008.

Benthic invertebrates in Antarctica are well known for their large size. This feature, known as “gigantism” is common amongst certain groups including sea spiders, sponges, isopods, starfish, and amphipods. The phenomenon is a subject of intense scientific investigation, but there are many contributing factors.

Slow growth rates, late reproductive maturation, prolonged periods of embryonic development, and low predation rates that are typical of Antarctic waters contribute to long life-spans for many species and can also result in large size animals. Animal physiology is thought to play a role as well, as those groups that require large amounts of calcium should not, in theory, grow well in Antarctic waters. This is because the calcium carbonate (needed for growth of shells, or starfish ‘tests’) has low solubility in very cold seawater. Yet starfish, which have a calcareous exoskeleton or ‘test’ which needs lots of calcium, can reach much larger sizes than found in New Zealand waters, as seen in [photo].

Another crucial part of the story is that the low sea temperatures allow more oxygen to be dissolved in the sea water than in warmer latitudes. Sea spiders for example are not only larger, but reach more than 1000 times the weight of most temperate species. Amphipod crustaceans in the Southern Ocean are also large; more than five times as long as the largest temperate species.

Related: Ocean LifeArctic SharksAntarctic Fish “Hibernate” in WinterLake Under 2 Miles of Ice

Google Summer of Code Projects

Over the last three years Google Summer of Code has provided 1500 students from 90 countries the chance to work on open source projects. Each participant will receive $4,500 as a stipend. Student applications will be accepted from March 24th to March 31st.

Details on the software projects are available now. Given the short time that the application is actually open getting a start looking for projects that interest you might be wise.

externs.com offers listings of science internships and engineering internships.

Related: Preparing Computer Science Students for JobsOpen Source for LEGO Mindstorms Open Source: The Scientific Model Applied to Programmingposts on fellowships and scholarships

Radiation Tolerant Bacteria

metallireducens bacteria

This image is from the Eye of Science web site (which has many great images):

Bacteria: Uranium waste bacteria (metallireducens bacteria) [the green in the image] Electron microscopy… This bacteria is able to survive in radioactive environments and turn the uranium waste from a soluble form (that can contaminate water supplies) to a solid form.

Other species of Geobacter bacteria can eliminate petroleum contamination in polluted water and convert waste organic matter to electricity. Geobacter sp. are anaerobic bacteria (living without oxygen) that use metals to gain energy in the same way that humans use oxygen. Coloured scanning electron micrograph, Magnification: x3,600 and x4,800

Related: Geobacter metallireducens at the microbe wikiThe Art and Science of Imaging2006 Nikon Small World PhotosBacterium Living with High Level RadiationArt of Science at Princeton (2005)Get Your Own Science Art

Explaining the Missing Antimatter

Flipping particle could explain missing antimatter

It is one the biggest mysteries in physics – where did all the antimatter go? Now a team of physicists claims to have found the first ever hint of an answer in experimental data. The findings could signal a major crack in the standard model, the theoretical edifice that describes nature’s fundamental particles and forces.

In its early days, the cosmos was a cauldron of radiation and equal amounts of matter and antimatter. As it cooled, all the antimatter annihilated in collisions with matter – but for some reason the proportions ended up lopsided, leaving some of the matter intact.

Physicists think the explanation for this lies with the weak nuclear force, which differs from the other fundamental forces in that it does not act equally on matter and antimatter. This asymmetry, called CP violation, could have allowed the matter to survive to form the elements, stars and galaxies we see today.

“It is tantalisingly interesting at the moment,” says Val Gibson, an expert on B meson physics at the University of Cambridge. “If it is true, it is earth-shattering.” Jacobo Konigsberg, who leads the CDF collaboration, says that Tevatron researchers are “cautiously excited” about the analysis. He points out that more data needs to be analysed to rule out a statistical fluke, which has happened several times before in particle physics.

Related: First Evidence of New Physics in b <--> s Transitions (research paper)posts tagged physicsMatter to Anti-Matter 3 Trillion Times a SecondQuantum Mechanics Made Relatively Simple Podcasts

Baby Sand Dollars Clone Themselves When They Sense Danger

Baby sand dollars clone themselves when they sense danger

The odds of growing up aren’t good for baby sand dollars. Smaller than the head of a pin, the larvae drift in the ocean — easy prey for anything with a mouth.

But a University of Washington graduate student has discovered the tiny animal has a surprising survival strategy: Faced with the threat of being gobbled up, it makes like Dr. Evil from the Austin Powers movies and clones itself. The resulting “mini-me” may escape hungry fish because it is even teenier than the original — and harder to see.

“If you are eaten, but the smaller version of you survives, you’re still a winner from an evolutionary standpoint,” said Dawn Vaughn.

Familiar inhabitants of Washington’s subtidal zone, sand dollars start life though the chance encounter of sperm and egg, simultaneously released into the water by mature adults. The larvae free-float for about six weeks before metamorphosing into miniature sand dollars that settle in colonies and eventually grow to full size.

The white shells that wash up on the beach are the creatures’ external skeletons. Living sand dollars are covered with velvety, purple spines used to grab food particles. Vaughn knew many other marine invertebrates shift their shape to avoid being eaten. Colonial animals called bryozoans grow spikes when voracious sea slugs crawl across them. Barnacles take on a bent posture to repel snails. Vaughn’s own previous research showed periwinkle larvae narrow their shell openings to keep out marauding crab larvae.