Category Archives: Universities

Engineering Again Dominates The Highest Paying College Degree Programs

As usual most of the highest paying undergraduate college degrees in the USA are engineering. Based on data from payscale, all of the top 10 highest paying fields are in engineering. The highest non-engineering fields are applied mathematics and computer science. Petroleum Engineering salaries have exploded over the last few years to $93,000 for a starting median salary, more than $30,000 above the next highest paying degree.

Mid-career median salaries follow the same tendency for engineering degrees, though in this case, 3 of the top 10 salaries (15 years into a career) are for those with non-engineering degrees: applied mathematics, physics and economics.

Highest Paid Undergrad College Degrees
Degree Starting Median Salary Mid-Career Median Salary 2009 starting salary
Petroleum Engineering $93,000 $157,000
Chemical Engineering $64,800 $108,000 $65,700
Nuclear Engineering $63,900 $104,000
Computer Engineering $61,200 $99,500 $61,700
Electrical Engineering $60,800 $104,000 $60,200
Aerospace Engineering $59,400 $108,000 $59,600
Material Science and Engineering $59,400 $93,600
Industrial Engineering $58,200 $97,400 $57,100
Mechanical Engineering $58,300 $97,400 $58,900
Software Engineering $56,700 $91,300
Applied Mathematics $56,400 $101,000
Computer Science $56,200 $97,700 $56,400

Related: PayScale Survey Shows Engineering Degree Results in the Highest Pay (2009)Engineering Majors Hold 8 of Top 10 Highest Paid Majors (2010)Engineering Graduates Get Top Salary Offers in 2006Shortage of Petroleum Engineers (2006)10 Jobs That Provide a Great Return on Investment

More degrees are shown in the following table, but this table doesn’t include all the degree; it just shows a sample of the rest of the degrees.
Continue reading

Google Research Awards

Google Faculty Research Awards, support full-time faculty pursuing research. The most recent quarterly funding totals over $4 million in 75 awards across 18 different areas. The areas that received the highest level of funding for this round were systems and infrastructure, human computer interaction, multimedia and security. In this round, 26 percent of the funding was awarded to universities outside the U.S.

Some examples

  • Erik Brynjolfsson, Massachusetts Institute of Technology. The Future of Prediction – How Google Searches Foreshadow Housing Prices and Quantities (Economics and market algortihms): How data from search engines like Google provide a highly accurate but simple way to predict future business activities.
  • John Quinn, Makerere University, Uganda. Mobile Crop Surveillance in the Developing World (Multimedia search and audio/video processing): A computer vision system using camera-enabled mobile devices to monitor the spread of viral disease among staple crops.
  • Ronojoy Adhikari, The Institute of Mathematical Sciences, India (probably this is the person, why doesn’t google include a link to these people’s sites?). Machine Learning of Syntax in Undeciphered Scripts (Machine learning): Devise algorithms that would learn to search for evidence of semantics in datasets such as the Indus script.
  • Jennifer Rexford, Princeton. Rethinking Wide-Area Traffic Management (Software and hardware systems infrastructure): Drawing on mature techniques from optimization theory, design new traffic-management solutions where the hosts, routers, and management system cooperate in a more effective way.

Smart companies realize great research is done in universities that should be adlopted by companies. Many companies listen to fools that talk of academic research as not “real world.” Companies like Google do well for many reasons but one is they pay more attention to scientific research than wall street research. More companies would benefit from adopting this leadership style from Google. Google also continues to fund and support research.

Related: posts on science and engineering fundingEnergy Secretary Steve Chu Speaks On Funding Science Research (with Google CEO)Google.org Invests $10 million in Geothermal EnergyLarry Page and Sergey Brin Interview

Science Courses for the Next Generation

During the last three years, the Howard Hughes Medical Institute (HHMI) has recruited 44 colleges and universities across the country to join its Science Education Alliance (SEA), which is changing how freshmen learn about science by providing them with an authentic, classroom-based research experience. Now professors from three schools offering the SEA course will help create the next generation of research-based courses that will extend the program’s reach to upperclassmen.

These “SEA sabbaticals” are another step toward HHMI’s long-term goal of making the SEA a resource for science educators nationwide. When HHMI unveiled the SEA program in 2007, it committed $4 million over four years to the development and rollout of the Alliance’s first course: the National Genomics Research Initiative. That year-long course has enabled freshmen to make real discoveries by doing research on phage, which are viruses that infect bacteria. The research-based laboratory course provides beginning college students with a true research experience that is teaching them how to approach scientific problems creatively and will hopefully solidify their interest in a career in science.

The freshmen students in the SEA course work closely with faculty to design experiments and make scientific discoveries. Many say the experience has changed their view of science. But it soon became apparent that one set of courses would not be enough to continue challenging students as they progressed through college. So HHMI decided to look for creative solutions to that problem.

HHMI invited the 27 schools currently participating in the SEA to apply, and three were accepted to develop new courses. These new projects are focused on designing a curriculum that will pick up where the virus genomics class ends.

Faculty from Cabrini College in Radnor, Pennsylvania, will develop a cellular and molecular biology course in which students will examine phage genes and determine which are essential for the virus’s survival. In a biochemistry course, students will purify and characterize the proteins produced by the genes to determine their function.

University of Louisiana at Monroe’s team will create three modules that could be used in several courses for juniors and seniors. In one, they will create lessons in which students develop methods to determine how their phages reproduce after they enter bacteria. Students would look at genetic markers to determine how phages should be classified into related “clusters” in a second module. Students taking the third course would explore the best way to determine whether genes are essential to the survival of the virus.

University of Puerto Rico, Cayey faculty will create a course to help students examine and characterize various phage proteins. Proteins of interest include those that make up the virus’s protective coating, and those that are activated once infection has begun.

HHMI continue to fund huge amounts of great work in science.

Full press release: Science Education Alliance Builds Research Courses for the Next Generation

Related: $60 Million for Science Teaching at Liberal Arts CollegesHHMI Expands Support of Postdoctoral Scientists$600 Million for Basic Biomedical ResearchHoward Hughes Medical Institute Takes Big Open Access Step

Webcast on Finding the Missing Memristor

Very interesting lecture on finding the missing memristor by R. Stanley Williams. From our post in 2008:

How We Found the Missing Memristor By R. Stanley Williams:

For nearly 150 years, the known fundamental passive circuit elements were limited to the capacitor (discovered in 1745), the resistor (1827), and the inductor (1831). Then, in a brilliant but underappreciated 1971 paper, Leon Chua, a professor of electrical engineering at the University of California, Berkeley, predicted the existence of a fourth fundamental device, which he called a memristor.

Related: Demystifying the Memristorposts on computer sciencevon Neumann Architecture and Bottleneck

Green Technology Innovation by College Engineering Students

With prizes totaling more than $100,000 in value, this year’s Climate Leadership Challenge is believed to be the most lucrative college or university competition of its kind in the country. The contest was open to all UW-Madison students.

A device that would help provide electricity efficiently and at low cost in rural areas of developing countries took the top prize – $50,000 – this week in a student competition at the University of Wisconsin-Madison for innovative ideas to counteract climate change.

The “microformer” is the brainchild of Jonathan Lee, Dan Ludois, and Patricio Mendoza, all graduate students in electrical engineering. Besides the cash prize, they will receive a promotional trip worth $5,000 and an option for a free one-year lease in the University Research Park’s new Metro Innovation Center on Madison’s east side.

“We really want to see implementation of the best ideas offered,” said Tracey Holloway, director of the Nelson Institute Center for Sustainability and the Global Environment at UW-Madison, which staged the contest for the second year in a row. “The purpose of this competition is to make an impact on climate change.”

The runner-up for the “most action-ready idea” was a proposal to promote the use of oil from Jatropha curcas plants to fuel special cooking stoves in places like Haiti. UW-Madison seniors Eyleen Chou (mechanical engineering), Jason Lohr (electrical engineering), Tyler Lark (biomedical engineering/mathematics) won $10,000 for their scheme to reduce deforestation by lowering demand for wood charcoal as a cooking fuel.

CORE Concept, a technology that would cut emissions from internal combustion engines by using a greater variety of fuels, won mechanical engineering doctoral students Sage Kokjohn, Derek Splitter, and Reed Hanson $15,000 as the “most innovative technical solution.”

SnowShoe, a smart phone application that would enable shoppers to check the carbon footprint of any item in a grocery store by scanning its bar code, won $15,000 as the “most innovative non-technical solution.” Graduate students Claus Moberg (atmospheric and oceanic science), Jami Morton (environment and resources), and Matt Leudtke (civil and environmental engineering) submitted the idea.

Other finalists were REDCASH, a plan to recycle desalination wastewater for carbon sequestration and hydrogen fuel production, by doctoral student Eric Downes (biophysics) and senior Ian Olson (physics/engineering physics); and Switch, an energy management system that integrates feedback and incentives into social gaming to reduce personal energy use, by doctoral students David Zaks (environment and resources) and Elizabeth Bagley (environment and resources/educational psychology).

Related: University of Michigan Wins Solar Car Challenge AgainCollegiate Inventors Competition$10 Million X Prize for 100 MPG Car

University of Wisconsin-Stout Wins 2010 Rube Goldberg Contest

University of Wisconsin-Stout wins 2010 Rube Goldberg contest

The team’s machine was called “Valley of the Kings” and had an Egyptian theme, telling a tale of events following the death of King Tut.

The task for the Rube Goldberg machines this year was to dispense sanitizer into a hand. Wisconsin-Stout’s machine dispensed the sanitizer into a mummy’s hand. The Rube Goldberg competition, sponsored by Phi Chapter of Theta Tau fraternity, rewards machines that most effectively combine creativity with inefficiency and complexity.

Machines must use at least 20 steps to complete the task in no more than two minutes. Teams have three tries to complete two runs. Points are deducted if students have to assist the machine once it has started. The Wisconsin-Stout machine has 120 steps. The team completed two perfect runs with no interventions in about a minute and a half each.

St. Olaf’ College of Northfield, Minn., last year’s national winner, took second place with a medieval-themed machine. Pennsylvania State University placed third with an “Indiana Jones” theme.

Related: Rube Goldberg Machine Contest (2005)Goldbergian Flash Fits Rube Goldberg Web SiteBotball 2009 FinalsUW- Madison Wins 4th Concrete Canoe Competition

New Funding for arXiv Online Scientific Repository

The Cornell University Library is broadening the funding base for the arVix online scientific repository. Nearly 600,000 e-prints – research articles published online in physics, mathematics, statistics, computer science and related disciplines – now reside in arXiv, which is an open information source for hundreds of thousands of scientific researchers.

arXiv will remain free for readers and submitters, but the Library has established a voluntary, collaborative business model to engage institutions that benefit most from arXiv. “Keeping an open-access resource like arXiv sustainable means not only covering its costs, but also continuing to enhance its value, and that kind of financial commitment is beyond a single institution’s resources,” said Oya Rieger, Associate University Librarian for Information Technologies. “If a case can be made for any repository being community-supported, arXiv has to be at the top of the list.”

The 200 institutions that use arXiv most heavily account for more than 75 percent of institutional downloads. Cornell is asking these institutions for financial support in the form of annual contributions, and most of the top 25 have already committed to helping arXiv.

arXiv’s original dissemination model represented the first significant means to provide expedited access to scientific research well ahead of formal publication. Researchers upload their own articles to arXiv, and they are usually made available to the public the next day. arXiv, founded by physics professor Paul Ginsparg, has about 400,000 users and serves more than 2.5 million article downloads per month. Its 101,000 registered submitters live in nearly 200 countries.

arXiv is interconnected with many other scholarly information resources. These include the INSPIRE system being developed by supporting high-energy physics laboratories CERN, DESY, Fermilab and SLAC, as well as the Astrophysics Data System at Harvard University, another supporting institution. Read details about the operating principles of the new structure.

Related: Toward a More Open Scientific CultureSo, You Want to be an Astrophysicist?MIT Faculty Open Access to Their Scholarly ArticlesScience Commons: Making Scientific Research Re-useful

Printing Bone, Muscle and More

A Pittsburgh-based research team has created and used an innovative ink-jet system to print “bio-ink” patterns that direct muscle-derived stem cells from adult mice to differentiate into both muscle cells and bone cells.

The custom-built ink-jet printer, developed at Carnegie Mellon’s Robotics Institute, can deposit and immobilize growth factors in virtually any design, pattern or concentration, laying down patterns on native extracellular matrix-coated slides (such as fibrin). These slides are then placed in culture dishes and topped with muscle-derived stem cells (MDSCs). Based on pattern, dose or factor printed by the ink-jet, the MDSCs can be directed to differentiate down various cell-fate differentiation pathways (e.g. bone- or muscle-like).

“This system provides an unprecedented means to engineer replacement tissues derived from muscle stem cells,” said Johnny Huard, professor of orthopedic surgery at the University of Pittsburgh School of Medicine and director of the Stem Cell Research Center at Children’s Hospital of UPMC. Huard has long-standing research findings that show how muscle-derived stem cells (MDSCs) from mice can repair muscle in a model for Duchenne Muscular Dystrophy, improve cardiac function following heart failure, and heal large bone and articular cartilage defects.

Weiss and Campbell, along with graduate student Eric Miller, previously demonstrated the use of ink-jet printing to pattern growth factor “bio-inks” to control cell fates. For their current research, they teamed with Phillippi, Huard and biologists of the Stem Cell Research Center at Children’s Hospital to gain experience in using growth factors to control differentiation in populations of MDSCs from mice.

The team envisions the ink-jet technology as potentially useful for engineering stem cell-based therapies for repairing defects where multiple tissues are involved, such as joints where bone, tendon, cartilage and muscle interface. Patients afflicted with conditions like osteoarthritis might benefit from these therapies, which incorporate the needs of multiple tissues and may improve post-treatment clinical outcomes.

The long-term promise of this new technology could be the tailoring of tissue-engineered regenerative therapies. In preparation for preclinical studies, the Pittsburgh researchers are combining the versatile ink-jet system with advanced real-time live cell image analysis developed at the Robotics Institute and Molecular Biosensor and Imaging Center to further understand how stem cells differentiate into bone, muscle and other cell types.

Related: Engineer Tried to Save His Sister and Invented a Breakthrough Medical DeviceNanoparticles With Scorpion Venom Slow Cancer SpreadVery Cool Wearable Computing Gadget from MITFunding Medical Research

Graduate Engineering and Professional Education @UMichigan

Dilbert’s bosses broke the video link (so I removed it) – not a good sign that they will succeed in my eyes. If they can’t follow basic web usability guidelines it doesn’t make me want to spend time on them.

Engineering TV is a site with lots of good webcasts for engineers: “by engineers for engineers! Focused on technical B2B engineering topics”. In the embedded webcast Dr. Ann Marie Sastry, Director of the Energy Systems Engineering Program at the University of Michigan, discusses a collaboration between GM and the University of Michigan in the Interdisciplinary Graduate Engineering and Professional Education Programs. This is a good example of university and business collaboration.

Related: Directory of site with science and engineering webcastsScience Postercastsposts on engineering educationScience and Engineering Lectures from VideoLectures.Netprevious post on Engineering TV

How the Practice and Instruction of Engineering Must Change

Chief Scientist for the Rocky Mountain Institute and MacArthur Fellow, Amory Lovins, describes how small gains in efficiency at the consumption point can trigger gains that are magnitudes larger at higher levels and discusses how engineering must be practiced and taught fundamentally different.

Related: MIT Hosts Student Vehicle Design Summit59 MPG Toyota iQ Diesel Available in EuropeWebcast: Engineering Education in the 21st Century