Category Archives: Universities

Ninja Professors

Ninja professors

From the excellent Piled Higher and Deeper comic strip by Jorge Cham, www.phdcomics.com. Like many of the best comics (Dilbert, xkcd) 🙂 PhD is authored by an engineer: Jorge Cham got his PhD in Mechanical Engineering at Stanford University, and was a full-time Instructor and researcher at the California Institute of Technology.

Related: What Makes Scientists Different 🙂The Joy of WorkProgrammers

Exploring the Signaling Pathways of Cells

New probe may help untangle cells’ signaling pathways

MIT researchers have designed a new type of probe that can image thousands of interactions between proteins inside a living cell, giving them a tool to untangle the web of signaling pathways that control most of a cell’s activities.

“We can use this to identify new protein partners or to characterize existing interactions. We can identify what signaling pathway the proteins are involved in and during which phase of the cell cycle the interaction occurs,” said Alice Ting, the Pfizer-Laubach Career Development Assistant Professor of Chemistry and senior author of a paper describing the probe published online June 27 by the Journal of the American Chemical Society.

The new technique allows researchers to tag proteins with probes that link together like puzzle pieces if the proteins interact inside a cell. The probes are derived from an enzyme and its peptide substrate. If the probe-linked proteins interact, the enzyme and substrate also interact, which can be easily detected.

To create the probes, the researchers used the enzyme biotin ligase and its target, a 12-amino-acid peptide.

Related: Specific Protein and RNA Labeling in CellsUsing Bacteria to Carry Nanoparticles Into CellsMolecular Bioengineering and Dynamical Models of CellsThe Inner Life of a Cell (Animation)

S&P 500 CEOs are Engineering Graduates

2007 Data from Spencer Stuart on S&P 500 CEO (they deleted the link so the link was removed – yet another website proves to be unreliable without basic web usability principles being followed) shows once again more have undergraduate degrees in engineering than any other field.

Field
   
% of CEOs
2007 2006 2005

Engineering 21 23 20
Economics 15 13 11
Business Administration 13 12 15
Accounting 8 8 7
Liberal Arts 6 8 9
No degree or no data 3 3

The report does not show the fields for the rest of the CEO’s. 40% of S&P CEOs have MBAs. 27% have other advanced degrees. The University of Wisconsin-Madison, Princeton and Harvard tied for the most CEO’s with undergraduate degrees from their universities at 12. University of Texas has 10 and Stanford has 9.

Data for previous years is also from Spencer Stuart: 2006 S&P 500 CEO Education StudyTop degree for S&P 500 CEOs? Engineering (2005 study)

Related: Engineering Education Study Debateposts on science and engineering careersScience and Engineering Degrees lead to Career SuccessThe Future is Engineering

2008 Lemelson-MIT Prize for Invention

photo of Joseph Desimone

The Lemelson-MIT Prize awards $500,000 to mid-career inventors dedicated to improving our world through technological invention and innovation. Joseph M. DeSimone received the 2008 award.

His exposure to polymer science led him to pursue a Ph.D. in chemistry from Virginia Polytechnic Institute and State University in Blacksburg, Va. At the age of 25, DeSimone joined the University of North Carolina at Chapel Hill (UNC) as an assistant professor in chemistry and launched the university’s polymer program with his mentor Dr. Edward Samulski. He resides there today as the Chancellor’s Eminent Professor of Chemistry at UNC, in addition to serving as the William R. Kenan, Jr. Distinguished Professor of Chemical Engineering at North Carolina State University.

Among DeSimone’s notable inventions is an environmentally friendly manufacturing process that relies on supercritical carbon dioxide instead of water and bio-persistent surfactants (detergents) for the creation of fluoropolymers or high-performance plastics, such as Teflon®. More recently, he worked on a team to design a polymer-based, fully bioabsorbable, drug-eluting stent, which helps keep a blocked blood vessel open after a balloon-angioplasty and is absorbed by the body within 18 months.

DeSimone’s newest invention is PRINT® (Particle Replication in Non-wetting Templates) technology, used to manufacture nanocarriers in medicine. At present, DeSimone’s Lab is vested in a variety of projects that also extend beyond medicine, including potential applications for more efficient solar cells and morphable robots. In 2004, DeSimone co-founded Liquidia Technologies with a team of researchers from UNC to make the technology available in the market. Liquidia is using the PRINT technology to develop precisely engineered nanocarriers for highly targeted delivery of biological and small molecule therapeutics to treat cancer and other diseases. DeSimone’s proposed applications for cancer treatment with the PRINT platform was instrumental in UNC landing a grant of $24 million from the National Cancer Institute to establish the Carolina Center for Cancer Nanotechnology Excellence.

“You can do all the innovating you want in the laboratory, but if you can’t get it out of the university walls you do no one any good,” said DeSimone. He instills an entrepreneurial spirit in his students that focuses on the importance of commercializing technology and scientific inventions. One of DeSimone’s greatest accomplishments is his mentorship of more than 45 postdoctoral research associates, 52 Ph.D. candidates, six M.S. theses and 21 undergraduate researchers. Furthermore, he speaks to groups of high school students about the inventive process and encourages them to learn and explore areas that are less familiar to them to broaden their exposure to other disciplines.

A prolific inventor, DeSimone holds more than 115 issued patents with more than 70 new patent applications pending, and he has published more than 240 peer-reviewed scientific articles.

Related: Inspiring a New Generation of Inventors$500,000 for Innovation in Engineering EducationCollegiate Inventors Competitionposts on inventors

$100 Million for Ohio University Engineering Education

Ohio University gets record setting gift

This gift brings the Russes’ total giving to at least $100.7 million. Prior to this gift, the couple had contributed more than $8.9 million to Ohio University, the majority of which is held in endowments that support engineering.

The Russes’ generosity has made them the largest donors in the university’s history. Another engineering family — C. Paul and Beth K. Stocker — are next on the list with contributions totaling $31.9 million. The proceeds will support engineering education and research at Ohio University.

The Russes believe in putting support where it would have significant impact. In addition to supporting Russ College students, faculty and facilities, they established the Russ Prize to recognize how engineering improves the human condition. One of the top three engineering prizes in the world, the Russ Prize is awarded bi-annually in conjunction with the National Academy of Engineering.

The planning will take cues from the college’s strategic research areas: avionics; biomedical engineering, energy and the environment; and smart civil infrastructure. Planners expect that, in addition to supporting research, funds from the estate will support scholarships and leadership incentives for engineering students.

Related: Innovative Science and Engineering Higher EducationS&P 500 CEOs, Again Engineering Graduates Leadposts on engineering education$25 Million for Marquette College of EngineeringHarvard Elevates Engineering Profile$20 Million for Georgia Tech School of Industrial and Systems Engineering

Cost Efficient Solar Dish by Students

Solar Energy Dish

Low-cost system could revolutionize global energy production

A team led by MIT students this week successfully tested a prototype of what may be the most cost-efficient solar power system in the world – one team members believe has the potential to revolutionize global energy production.

The system consists of a 12-foot-wide mirrored dish that team members have spent the last several weeks assembling. The dish, made from a lightweight frame of thin, inexpensive aluminum tubing and strips of mirror, concentrates sunlight by a factor of 1,000 – creating heat so intense it could melt a bar of steel.

To demonstrate the system’s power, Spencer Ahrens, who just received his master’s in mechanical engineering from MIT, stood in a grassy field on the edge of the campus this week holding a long plank. Slowly, he eased it into position in front of the dish. Almost instantly there was a big puff of smoke, and flames erupted from the wood. Success!

Burning sticks is not what this dish is really for, of course. Attached to the end of a 12-foot-long aluminum tube rising from the center of the dish is a black-painted coil of tubing that has water running through it. When the dish is pointing directly at the sun, the water in the coil flashes immediately into steam.

Someday soon, Ahrens hopes, the company he and his teammates have founded, called RawSolar, will produce such dishes by the thousands. They could be set up in huge arrays to provide steam for industrial processing, or for heating or cooling buildings, as well as to hook up to steam turbines and generate electricity. Once in mass production, such arrays should pay for themselves within a couple of years with the energy they produce.

“This is actually the most efficient solar collector in existence, and it was just completed,” says Doug Wood, an inventor based in Washington state who patented key parts of the dish’s design–the rights to which he has signed over to the student team.

Great job students. Good luck with RawSolar. Photo (by David Chandler): Matt Ritter shows steam coming from the return hose after passing through the coil above the solar dish.

Related: Cheap, Superefficient SolarSolar Thermal in Desert, to Beat Coal by 2020Solar Tower Power GenerationEngineering Students Design Innovative Hand Dryerposts on solar energy

$1 Billion for Life Sciences in Massachusetts

Petri dish for economic growth

So far, the signs are good. The bill commits $500 million for research facilities, infrastructure improvements, and other capital projects; $250 million for tax credits; and $250 million for research grants. The plan is flexible enough to support research at private institutions while making major investments at public universities. Patrick and legislators fended off the most flagrant attempts to divert money into political pet projects with little direct relevance to the biotech industry, such as $49.5 million for a science building at a state college with no graduate science programs.

As I have mentioned many times the centers of scientific excellence are important for economic success. Massachusetts has some great advantages with MIT, Harvard, many biotech companies… but still must continue to focus on staying a center of excellence.

Related: Harvard Plans Life Sciences CampusChina’s Gene Therapy Investment$600 Million for Basic Biomedical ResearchSingapore woos top scientists with new labsEconomic Strength Through Technology Leadership

Mathematicians Critique Journal Rankings

Mathematicians Critique Journal Rankings

Three international math groups joined forces to issue a report last week decrying the use of citation statistics to evaluate scientific journals, research institutions and individual scientists. These statistics, sometimes called “bibliometrics,” measure how frequently a given journal’s articles are cited by other journals.

Read the report on Citation Statistics. This concern is justified. I do have some interest in some of these (and related) statistics but one must always remember their limitations.

Related: Country H-index Rank for Science PublicationsRanking Universities WorldwideBest Research University Rankings (2007)Don’t Forget the Proxy Nature of Data

Retooling Theory and Practice

Retooling Theory and Practice

“Education in the composites industry is haphazard at best,” admits Gregor Welpton, president of Black Feather Boats (Douglas, Alaska). Although a number of training programs for both engineers and technicians have been spawned over the years, they are essentially independent and, therefore, largely unrelated efforts. The product of universities, community colleges, regional training centers, technical institutes, private training companies and composites vendors, these offerings run a wide gamut from undergraduate and advanced degrees and technical certifications to short courses and periodic seminars. A variety of teaching methods are employed by these programs, including classroom instruction and/or video-based training, video-interactive training and, least likely, hands-on lab work.

“Currently, composites education is being driven by the individual institution,” explains Andre Cocquyt, president of GRPGuru (Brunswick, Maine) and one of the architects of a new composites training curriculum being developed in Brunswick. “There is no consistent approach, no consistent level of education, no qualification,” he adds. The unintended consequence is a dramatic variation in the competency levels of program graduates.

Speaking for many industry business owners, Welpton says the time has come for a coordinated industrywide education effort: “The industry needs an education initiative,” he says, “so that the employers know what they’re getting out of the institutions and the employees know what is expected of them when they show up to work.”

Related: Science Researchers: Need for Future EmployeesEducational Institutions Economic ImpactHow Many Engineers?

Big Drug Research and Development on Campus

Big Drug R&D on Campus

Merck and Harvard just signed an agreement to develop treatments for the bone disease osteoporosis. On Apr. 25 rival Pfizer (PFE) invested $14 million in an alliance with four universities to study diabetes and obesity.

Drugmakers are counting on these deals to solve a persistent problem: underperforming product pipelines. Merck, Pfizer, and others have been losing sales of one blockbuster drug after another as patents expire and competitors charge in with generics. Big drug companies have fought back by spending more on research, yet the number of new medicines approved each year is falling. In the last week of April alone, the U.S. Food & Drug Administration rejected two of Merck’s experimental drugs, prompting the company to lay off 1,200 salespeople.

Past deals between industry and academia have been hampered by patent disputes and tussles over publication rights, as companies tried to thwart academics who want to share their discoveries with colleagues around the world. So now the companies have devised policies allowing their Ivory Tower partners to patent and publish their discoveries, even as they draw the professors more deeply into corporate affairs.

Funding university activities this way can lead to conflicts and problems but realistically huge amounts of funding are entangled with possible conflicts of interest. The biggest concern I is that universities will bow to the almighty dollar instead of their missions. And inadequate oversight can damage their credibility (not one failure, most likely, but if a pattern emerges). For example: Researchers Fail to Reveal Full Drug Pay (“The Harvard group’s consulting arrangements with drug makers were already controversial because of the researchers’ advocacy of unapproved uses of psychiatric medicines in children.”). Then find out the companies were paying them well, the professors failed to disclose that and the advocacy is rightfully questioned.

Related: From Ghost Writing to Ghost Management in Medical JournalsFunding Medical ResearchMedical Study Integrity (or Lack Thereof)Marketing Drugs