Category Archives: Energy

Global Installed Wind Power Now Over 1.5% of Global Electricity Demand

graph of global installed wind power capacityChart showing global installed wind energy capacity by Curious Cat Science and Engineering Blog, Creative Commons Attribution. Data from World Wind Energy Association, for installed Mega Watts of global wind power capacity.

_________________________

Globally 27,339 MW of capacity were added in 2008, bringing the total to 121,188 MW, a 29% increase. The graph shows the top 10 producers (with the exceptions of Denmark and Portugal) and includes Japan (which is 13th).

In 2007, Europe had for 61% of installed capacity and the USA 18%. At the end of 2008 Europe had 55% of installed capacity, North America 23%, Asia 20%, Australia 1.5%, Latin America .6% and Africa .5%. Country shares of global capacity at the end of 2008: USA 21%, Germany 20%, Spain 14%, China 10%, India 8% (those 5 countries account for 73% of global capacity).

USA capacity grew 50% in 2008, moving it into the global lead for the first time in a decade. China grew 107%, the 3rd year in a row it more than doubled capacity.

Related: Wind Power Provided Over 1% of Global Electricity in 2007USA Wind Power Installed Capacity 1981 to 2005Wind Power has the Potential to Produce 20% of Electricity by 2030Top 12 Manufacturing Countries in 2007

Green Energy Projects in the Developing World

5 Huge Green-Tech Projects in the Developing World: Leyte Geothermal Field, Leyte, Philippines with a current capacity of 708.5 megawatts

Suzlon Wind Farm
Location: Near Dhule, India
Current capacity: 650 megawatts
Planned capacity: 1,000 megawatts
Estimated completion date: 2010
Built by Suzlon, a homegrown Indian energy compay, the Suzlon wind farm near Dhule will be the world’s largest when it’s completed in 2010. Already, it’s creeping up on Florida Light and Power’s Horse Hollow Wind Energy Center, which has a capacity of 735 megawatts.

Acme Solar Thermal Plants
Location: Haryana, India
Current capacity: 0 megawatts
Planned capacity: 1,000 megawatts
Estimated completion date: 2019
Acme, an Indian technology conglomerate, announced its intentions to build up to 1,000 megawatts of solar thermal power Tuesday. The company providing the technology, eSolar, makes 46-megawatt modular power plants that concentrate the sun’s rays onto a central boiler to generate steam to drive a turbine. ESolar’s Rob Rogan said that the companies would break ground on the first 100 megawatts of solar power within the year.

Qaidam Basin Solar PV Installaton
Location: Qinghai Province, China
Current capacity: 0 megawatts
Planned capacity: 1,000 megawatts
Estimated completion date: ?
Two local Chinese firms announced their intentions to install up to 1,000 megawatts of solar photovoltaic panels in northwestern China in January. The China Technology Development Group Corporation and Qinghai New Energy Company will start with a more modest 30 megawatts. They expect to break ground during 2009.

Related: Solar Thermal in Desert, to Beat Coal by 2020Wind Power Potential to Produce 20% of Electricity Supply by 2030Google.org Invests $10 million in Geothermal Energy

Canadian Oil Sands

Canadian oil sands sitePhotograph by Peter Essick, National Geographic

Canadian Oil Boom

To extract each barrel of oil from a surface mine, the industry must first cut down the forest, then remove an average of two tons of peat and dirt that lie above the oil sands layer, then two tons of the sand itself. It must heat several barrels of water to strip the bitumen from the sand and upgrade it, and afterward it discharges contaminated water into tailings ponds like the one near Mildred Lake. They now cover around 50 square miles.

The Alberta government estimates that the province’s three main oil sands deposits, of which the Athabasca one is the largest, contain 173 billion barrels of oil that are economically recoverable today. “The size of that, on the world stage—it’s massive,” says Rick George, CEO of Suncor, which opened the first mine on the Athabasca River in 1967. In 2003, when the Oil & Gas Journal added the Alberta oil sands to its list of proven reserves, it immediately propelled Canada to second place, behind Saudi Arabia, among oil-producing nations. The proven reserves in the oil sands are eight times those of the entire U.S. “And that number will do nothing but go up,” says George. The Alberta Energy Resources and Conservation Board estimates that more than 300 billion barrels may one day be recoverable from the oil sands; it puts the total size of the deposit at 1.7 trillion barrels.

But the free market does not consider the effects of the mines on the river or the forest, or on the people who live there, unless it is forced to. Nor, left to itself, will it consider the effects of the oil sands on climate. Jim Boucher has collaborated with the oil sands industry in order to build a new economy for his people, to replace the one they lost, to provide a new future for kids who no longer hunt ptarmigan in the moonlight. But he is aware of the trade-offs. “It’s a struggle to balance the needs of today and tomorrow when you look at the environment we’re going to live in,” he says. In northern Alberta the question of how to strike that balance has been left to the free market, and its answer has been to forget about tomorrow. Tomorrow is not its job.

This is a good article by National Geographic. We need energy. We also need to protect the environment. The trade-offs societies decide to make are often not easy. But open discussion of the issues is important.

Related: Wind Power Provided Over 1% of Global Electricity in 200759 MPG Toyota iQ DieselSolar Thermal in Desert, to Beat Coal by 2020Bigger Impact: 15 to 18 mpg or 50 to 100 mpg?

Google Aids Green Action

Google has a focus on energy as I have discussed previously. Google has been working to provide a way for people to get information on energy use in their homes that can be used to reduce your energy use.

Power to the people

studies show that access to home energy information results in savings between 5-15% on monthly electricity bills. It may not sound like much, but if half of America’s households cut their energy demand by 10 percent, it would be the equivalent of taking eight million cars off the road.

We’ve been participating in the dialogue in Washington, DC and with public agencies in the U.S. and other parts of the world to advocate for investment in the building of a “smart grid,” to bring our 1950s-era electricity grid into the digital age. Specifically, to provide both consumers and utilities with real-time energy information, homes must be equipped with advanced energy meters called “smart meters.” There are currently about 40 million smart meters in use worldwide, with plans to add another 100 million in the next few years.

Over the last several months, our engineers have developed a software tool called Google PowerMeter, which will show consumers their home energy information almost in real time, right on their computer. Google PowerMeter is not yet available to the public since we’re testing it out with Googlers first.

Related: Electricity SavingsGoogle.org Invests $10 million in Geothermal EnergyGoogle Investing Huge Sums in Renewable Energy and is Hiring

$100 Million to Tackle Energy Issues

Stanford launches $100 million initiative to tackle energy issues

The $100 million in new funds will enable the hiring of additional faculty and support new graduate students, in addition to the more than $30 million in yearly funding now spent on energy research.

Precourt holds bachelor’s and master’s degrees in petroleum engineering from Stanford and an MBA from Harvard University. He has spent his career in the energy industry, holding president and/or CEO positions at Hamilton Oil Co.; Tejas Gas Corporation, subsequently a Shell Oil Co. subsidiary; and ScissorTail Energy and Hermes Consolidated, gatherers, transporters and processors of natural gas, crude oil and refined products.

He is convinced that Stanford research can influence national energy policy for the better. “The wonderful resources that are available at Stanford, and the multidisciplinary approach they have to developing working solutions, are really attractive in terms of making things happen,” he said.

On a personal level, Precourt said, “Stanford made a huge impact on my life, as I look back on it. It was a superb education and I made some wonderful friends that I’ve taken with me for my lifetime.” Precourt donated $50 million to the energy institute that bears his name.

A $40 million gift from Steyer and Taylor will create a new research center as part of the institute, the TomKat Center for Sustainable Energy.

Related: MIT’s Energy ‘Manhattan Project’Engineers Save EnergyGoogle Investing Huge Sums in Renewable Energy and is Hiringmore posts on Stanford

Easier Way to Make Coal Cleaner

MIT has an Energy “Manhattan project”. The USA has a huge amount of coal, if we ever can figure out how to make it clean that will be a huge benefit (though I have my doubts we can really make it clean enough). easier way to make coal cleaner

“Our approach — ‘partial capture’ — can get CO2 emissions from coal-burning plants down to emissions levels of natural gas power plants,” said Ashleigh Hildebrand, a graduate student in chemical engineering and the Technology and Policy Program. “Policies such as California’s Emissions Performance Standards could be met by coal plants using partial capture rather than having to rely solely on natural gas, which is increasingly imported and subject to high and volatile prices.”

The researchers conclude that as a near-term measure, partial capture looks promising. New coal plants with lower CO2 emissions would generate much-needed electricity while also demonstrating carbon capture and providing a setting for testing CO2 storage — steps that will accelerate the large-scale deployment of full capture in the future.

Related: Solar Thermal in Desert, to Beat Coal by 2020Electricity SavingsWind Power Provided Over 1% of Global Electricity in 2007Australian Coal Mining Caused Earthquakes

Dean Kamen: Stirling Engines

Dean Kamen: part man, part machine

Conceived in Scotland almost 200 years ago, the Stirling [engine] is a marvel of thermo-dynamics that could help to replace the internal combustion engine – in theory it can turn any source of heat into electricity, in silence and with 100 per cent efficiency. But corporations including Phillips, Ford and Nasa have devoted decades of research, and millions of dollars, to developing the engine, and all retired defeated, having failed to find a way of turning the theoretical principles of the engine into a workable everyday application. Kamen, nevertheless, has spent the past 10 years and, he estimates, up to $40 million working on the problem.

Now he and his engineers have built and tested a range of Stirling engines suitable for mass production that can be run on anything from jet fuel to cow dung. The one in the boot of the small blue car is designed to extend its range and constantly recharge its batteries to make a new kind of hybrid vehicle: one fit for the roads of the 21st century. A Stirling-electric hybrid, Kamen tells me, can travel farther and more efficiently than conventional electric cars; it generates enough power to run energy-hungry devices such as heaters and defrosters that are essential for drivers who, unlike those he calls the ‘tofu heads’ of California, must cope with a cold climate; and even using petrol, the engine runs far cleaner than petrol-electric hybrids such as Toyota’s Prius.

However, Kamen confesses, his new creation isn’t quite finished yet: ‘The Stirling engine’s not hooked up. Which really pisses me off.’

But it could work?

‘It will work,’ he says. ‘Trust me.’

Related: R&D Magazine’s 2006 Innovator of the YearRobotic Prosthetic Arms for People

Wind Turbine Manufacturing in Colorado

Vestas picks Pueblo for plant

Danish wind turbine manufacture Vestas Wind Systems has chosen Pueblo for what it has said is a nearly $240 million manufacturing plant to build the steel towers needed to hold wind turbines aloft, state officials said Friday.

Two weeks ago, on Aug. 15, Gov. Ritter announced that Vestas was building two new manufacturing plants in Brighton. The wind-blade production plant and nacelle assembly factory represent a $290 million capital investment and will bring 1,350 new jobs to Colorado.

Just months before that, in March, the company opened Vestas Blades America Inc., a $60 million manufacturing plant in Windsor, north of Denver, employing about 464 people to build blades for wind turbines. Before that plant was even finished, the company announced in November 2007 that it would increase the plant 50 percent in size, production and employee numbers.

This is a reminder that manufacturing output continues to grow in the USA. In June they received an order for 500 MW in the USA. In October Vestas has received orders for 102 MW of turbines from Italy and 99 MW of turbines from Spain.

Related: Wind Power Provided Over 1% of Global Electricity in 2007Wind Power Potential to Produce 20% of Electricity Supply by 2030Home Use Vertical Axis Wind Turbine

59 MPG Toyota iQ Diesel Available in Europe

image of seating in the toyota iQ

59 MPG Toyota iQ On Sale In Europe, US Plans Unclear

With lower carbon dioxide emissions than the Prius — around 159 grams of CO2 emitted per mile by the 1.0 liter gas engine and 166 g/mile for the diesel version — not only does the iQ deliver on fuel economy, but its straight-up conventional engine is a pollution winner too.

At just about 9.8 feet long, 5.5 feet wide and 4.9 feet tall, Toyota certainly has pulled of a near engineering miracle with the amount of stuff they’ve crammed into this tiny vehicle. Toyota claims the iQ can fit 3 adults and 1 child “comfortably.”

Toyota expects to sell about 80,000 of them a year in Europe.

I own some Toyota stock (and bought a bit more recently) based on their excellent management and production system and the results they have achieved (so I pay attention to what they are doing – plus I own them because they do things I see as wise so it is a self reinforcing dynamic). Business week recently wrote about Ford’s 65 mpg Diesel Car the U.S. Can’t Have.

I owned Ford stock back when they were adopting Deming based management principles but when they dropped those to pursue short sighted goals and poor management practices I sold and bought Toyota (turned out to be a very wise decision – my mistake was holding Ford too long hoping they would realize their mistake).

Related: Toyota Engineering Development ProcessToyota Cultivating Engineering TalentToyota Winglet, Personal TransportationToyota iUnitToyota iQ media kit (lots of details)

Wind Power Provided Over 1% of Global Electricity in 2007

graph of global installed wind power capacity

Data from World Wind Energy Association, for installed Mega Watts of global wind power capacity in 2007. 19,696 MW of capacity were added in 2007, bringing the total to 93,849 MW. Europe accounts for 61% of installed capacity, Germany accounts for 24% and the USA 18%.

The graph shows the top 10 producers (with the exceptions of Denmark and Portugal) and includes Japan (which is 13th).

Related: USA Wind Power Installed Capacity 1981 to 2005Wind Power has the Potential to Produce 20% of Electricity by 2030Top 12 Manufacturing Countries in 2007Sails for Modern Cargo ShipsMIT’s Energy ‘Manhattan Project’