Category Archives: Engineering

Golden Buckyballs

In the hunt for golden buckyballs:

Scientists at the Pacific Northwest National Laboratory in Richland and at the University of Nebraska report in today’s Proceedings of the National Academy of Sciences that they have discovered hollow molecular structures made of pure gold — golden buckyballs.

“You can put another atom in the center,” Wang said. Depending upon the kind of atom put at the center of the cage, he said, you could create a material with novel chemical, magnetic or even optical properties. “We intend to try that.”

Related:

Mexico: Pumping Out Engineers

Mexico: Pumping Out Engineers

Currently, 451,000 Mexican students are enrolled in full-time undergraduate programs, vs. just over 370,000 in the U.S. The Mexican students benefit from high-tech equipment and materials donated to their schools by foreign companies, which help develop course content to fit their needs. Many of these engineers graduate knowing how to use the latest computer-assisted design (CAD) software and speaking fluent English.

Another country on the engineering education bandwagon for economic growth.

Those figures are quite impressive. I would like to see what Vivek Wadhwa (one of the authors of the Duke study: USA Under-counting Engineering Graduates) says about the comparability of the figures. Still, the number of engineering undergraduate students in Mexico surprises me; this is one more indication of how many people see the value of engineering education.

Related:

Science and Engineering Visualization Challenge

The Synapse Revealed

Image by Graham Johnson, Graham Johnson Medical Media. The Synapse Revealed – Deep inside the brain, a neuron prepares to transmit a signal to its target. The brain contains billions of neurons, whose network of chemical messages form the basis of all thought, movement and behavior.

The National Science Foundation (NSF) and Science created the Science and Engineering Visualization Challenge: “In a world where science literacy is dismayingly rare, illustrations provide the most immediate and influential connection between scientists and other citizens, and the best hope for nurturing popular interest.” The deadline for submissions is 31 May 2006. See information on the 2005 winners (including the image shown here).

Shortage of Petroleum Engineers

Talent Shortage Slows Oil Tech

There’s an extreme shortage of experienced petroleum engineers,” said Tariq Ahmad, a petroleum engineer consultant who has been in the business for 28 years. “The technology is there, but if you don’t have the people who can run the technology, what’s the use? It’s a major, major problem.”

A total of 2,412 students are enrolled in petroleum engineering undergraduate programs in the United States this year, according to Lloyd Heinze, chair of the petroleum engineering department at Texas Tech University. That compares with 11,014 students enrolled in petroleum engineering programs in 1983.

Related posts:

Demystifying Technology for High School Students

Demystifying technology for high-schoolers by Greg Rienzi, Johns Hopkins University News:

The Engineering Innovation program, which Hopkins will initially offer at three JHU campuses and five California universities, will allow high school sophomores, juniors and seniors to enroll in the college-level course What is Engineering? taught by Johns Hopkins or other university-accredited faculty.

The initiative is based upon a successful program the Whiting School developed five years ago for students in Montgomery County. The program was expanded last year to include students in Baltimore City and Baltimore County.

The participants in the program will spend four weeks learning the basics of engineering as they conduct hands-on laboratory experiments and complete assignments that range from building a better mousetrap to assembling a digital circuit that operates a robot.

Johns Hopkins will continue to accept applications until June 1st, or until classes are full.

For more information see: Engineering Innovation from The Whiting School of Engineering at Johns Hopkins University.

Top degree for S&P 500 CEOs? Engineering

See more recent post with data from 2005-2009: S&P 500 CEO’s: Engineers Stay at the Top

The most common undergraduate degree for CEO’s of Fortune 500 companies is Engineering: with 20% of all CEOs (from 2005 CEO Study: A Statistical Snapshot of Leading CEOs

Another interesting point from the report (at least to those of us who grew up in Madison with a father who taught at the University of Wisconsin (teaching Chemical Engineering, Industrial Engineering and Statistics, in my father’s case, by the way):

For the second year in a row, the University of Wisconsin joins Harvard as the most common undergraduate university attended by S&P 500 CEOs. Prior to 2004, Harvard alone was the most common school attended.

Engineering the Boarding of Airplanes

Airlines Try Smarter Boarding

“An airplane that spends an hour on the ground between flights might fly five trips a day,” he explains. “Cut the turnaround time to 40 minutes, and maybe that same plane can complete six or seven flights a day.” More flights mean more paying passengers, and ultimately, more revenue.

Convinced that there was a statistical solution to the problem, Lindemann approached Arizona State University’s industrial engineering department. “We have a great university in our backyard, and hoped they could help,”

Professor René Villalobos and graduate student Menkes van den Briel began reviewing boarding systems used by other airlines. “The conventional wisdom was that boarding from back to front was most effective,” says van den Briel. The engineers looked at an inside-out strategy that boards planes from window to aisle, and also examined a 2002 simulation study that claimed calling passengers individually by seat number was the fastest way to load an aircraft.

The two then developed a mathematical formula that measured the number of times passengers were likely to get in each other’s way during boarding. “We knew that boarding time was negatively impacted by passengers interfering with one another,” explains van den Briel. “So we built a model to calculate these incidents.”

Villalobos and van den Briel looked at interference resulting from passengers obstructing the aisle, as well as that caused by seated passengers blocking a window or middle seat. They applied the equation to eight different boarding scenarios, looking at both front-to-back and outside-in systems.

Villalobos and van den Briel presented America West with a boarding approach called the reverse pyramid that calls for simultaneously loading an aircraft from back to front and outside in. Window and middle passengers near the back of the plane board first; those with aisle seats near the front are called last. “Our research showed that this method created the fewest incidents of interference between passengers,” Villalobos explains, “and was therefore the fastest.”

A nice example of industrial engineering. And a clear example of the benefit of industry higher education cooperation.

Nanowired at Berkeley

Nanowires

Photo: Cross-sectional scanning electron micrograph image of vertically-grown silicon nanowires off of a silicon substrate. (courtesy the researchers)

Nanowired by David Pescovitz:

“We’re attacking three fundamental issues,” Yang says. “Can we make these building blocks of nanodevices? Can we identify and harness useful physical properties in them? And can we integrate them in parallel? Individual devices are fundamentally interesting. But more importantly, we need massive numbers of them to work together as one system.”

The researchers demonstrated that minute voltages could control the flow of ions through the nanoscale plumbing system. In the future, the same technique might be used to shuttle proteins or pieces of DNA from a biological sample through the tubes in a lab-on-a-chip. Yang is currently developing a technique to conduct optical sensing within the nanofluidic channels so that the whole lab is self-contained in one device.

America’s Technology Advantage Slipping

A Red Flag In The Brain Game.

The 30th Annual ACM-ICPC World Finals sponsored by IBM were held in San Antonio this April: view results.

Of the home teams, only Massachusetts Institute of Technology ranked among the 12 highest finishers. Most top spots were seized by teams from Eastern Europe and Asia. Until the late 1990s, U.S. teams dominated these contests. But the tide has turned. Last year not one was in the top dozen.

As an indicator this is a minor one. But it is one more indication that indeed the tide is turning. The results seem worse based on “The 83 teams who competed in the World Finals are made up of 22 North American teams, 3 teams from Africa/Middle East, 7 from Latin America, 22 from Europe and Russia, and 29 from the Asia/South Pacific region.” So the USA had close to 20% of the participants and only 1 of the top 38 teams (Canada had at least 4 in the top 38). The USA had 5 of the 17 teams tied for 39th place.

The poor showings should serve as a wake-up call for government, industry, and educators. The output of American computer science programs is plummeting, even while that of Eastern European and Asian schools is rising. China and India, the new global tech powerhouses, are fueled by 900,000 engineering graduates of all types each year, more than triple the number of U.S. grads. Computer science is a key subset of engineering. “If our talent base weakens, our lead in technology, business, and economics will fade faster than any of us can imagine,” warns Richard Florida, a professor at George Mason University and author of The Flight of the Creative Class.

Again results of two years of this programming challenge are hardly a significant indication. Still if there was any field that Americans felt they still felt they were dominant in it would likely be programing (maybe health care – what do you think?). Given that this seemed at least worth a post in our blog.

It is also interesting to note, this Business Week article uses the “China and India, the new global tech powerhouses, are fueled by 900,000 engineering graduates of all types each year, more than triple the number of U.S. grads.” stats even though this article specifically tracks a Duke team and Business Week published several articles on the Duke study, USA Under-counting Engineering Graduates, that refutes those numbers.

Related Posts:

Invention Machine

John Koza Has Built an Invention Machine by Jonathon Keats:

Now 62 and an adjunct professor at Stanford University, Koza is the inventor of genetic programming, a revolutionary approach to artificial intelligence (AI) capable of solving complex engineering problems with virtually no human guidance. Koza’s 1,000 networked computers don’t just follow a preordained routine. They create, growing new and unexpected designs out of the most basic code. They are computers that innovate, that find solutions not only equal to but better than the best work of expert humans. His “invention machine,” as he likes to call it, has even earned a U.S. patent for developing a system to make factories more efficient, one of the first intellectual-property protections ever granted to a nonhuman designer.

Yet as impressive as these creations may be, none are half as significant as the machine’s method: Darwinian evolution, the process of natural selection. Over and over, bits of computer code are, essentially, procreating. And over the course of hundreds or thousands of generations, that code evolves into offspring so well-adapted for its designated job that it is demonstrably superior to anything we can imagine.

Great article from Popular Science magazine.

Home Page of John R. Koza. His latest book: Genetic Programming IV: Routine Human-Competitive Machine Intelligence by John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu and Guido Lanza.

Previous posts on popular science articles: Bannanas Going Going Gone and Colored Bubbles.