Category Archives: Engineering

Better Way To Desalinate Water

NJIT Professor Discovers Better Way To Desalinate Water – NJIT broke the link to their press release so I removed it 🙁 A university breaking news release web link, sigh. At least far fewer web sites are run by pointy haired bosses that don’t understand extremely basic rules like web pages must live forever.

Chemical engineer Kamalesh Sirkar, PhD, a distinguished professor at New Jersey Institute of Technology (NJIT) and an expert in membrane separation technology, is leading a team of researchers to develop a breakthrough method to desalinate water. Sirkar, who holds more than 20 patents in the field of membrane separation, said that using his technology, engineers will be able to recover water from brines with the highest salt concentrations.

Engineering is Elementary

Elementary Engineers: Engineering concepts should be taught at an early age by Polly Roberts, Richmond.com:

Christine M. Cunningham, vice president of research at the Museum of Science, Boston spoke to more than 200 Virginia elementary school teachers last week at the 10th Annual Children’s Engineering Convention in Glen Allen.

The EiE program then provides teachers with lesson plans, handouts and background information so they can discuss the engineering aspects of the book with their students and have them participate in their own “engineering design challenge,” which in this case would be developing a water purifier.

Cunningham said the program helps build and reinforce skills such as problem solving, data analysis, teamwork, creativity and more. Plus, starting the lesson with a book incorporates literacy.

Engineering is Elementary (EiE): Engineering and Technology Lessons For Children

This is another nice resource for teachers including lesson plans such as: Catching the Wind – Designing Windmills. For more resources see our: Science and Engineering Link Directory

Science and Engineering Indicators – Workforce

The National Science Board has release the comprehensive Science and Engineering Indicators 2006. The report contains a great deal of interesting information. Some highlights

The science and engineering workforce in the United States has grown rapidly, both over the last half century and the last decade.

  • From 1950 to 2000, employment in S&E occupations grew from fewer than 200,000 to more than 4 million workers, an average annual growth rate of 6.4%.
  • Between the 1990 and 2000 censuses, S&E occupations continued to grow at an average annual rate of 3.6%, more than triple the rate of growth of other occupations.
  • Between 1980 and 2000, the total number of S&E degrees earned grew at an average annual rate of 1.5%, which was faster than labor force growth, but less than the 4.2% growth of S&E occupations. S&E bachelor’s degrees grew at a 1.4% average annual rate, and S&E doctorates at 1.9%.
  • Approximately 12.9 million workers say they need at least a bachelor’s degree level of knowledge in S&E fields in their jobs. However, only 4.9 million were in occupations formally defined as S&E.
  • Twelve million workers have an S&E degree as their highest degree and 15.7 million have at least one degree in an S&E field.
  • Increases in median real salary for recent S&E graduates between 1993 and 2003 indicate relatively high demand for S&E skills during the past decade.
  • For all broad S&E fields, median real salaries grew faster over the decade for master’s degree recipients than for bachelor’s in the same field. This ranged from a 31.8% increase in median real earnings for recipients of physical science master’s degrees to a 54.8% increase for recipients of master’s degrees in computer and mathematical sciences. At the master’s level, however, non-S&E degrees also enjoy large increases in real median salary, growing by 52.7%.
  • Twenty-nine percent of all S&E degree holders in the labor force are age 50 or over. Among S&E doctorate holders in the labor force, 44% are age 50 or over.
  • By age 62, half of S&E bachelor’s degree holders had left full-time employment. Doctorate degree holders work slightly longer, with half leaving full-time employment by age 66.
  • Twenty-five percent of all college-educated workers in S&E occupations in 2003 were foreign born.
  • Forty percent of doctorate degree holders in S&E occupations in 2003 were foreign born.
  • Among all doctorate holders resident in the United States in 2003, a majority in computer science (57%), electrical engineering (57%), civil engineering (54%), and mechanical engineering (52%) were foreign born.
  • Women were 12% of those in S&E occupations in 1980 and 25% in 2000. However, the growth in representation between 1990 and 2000 was only 3 percentage points.
  • The representation of blacks in S&E occupations increased from 2.6% in 1980 to 6.9% in 2000. The representation of Hispanics increased from 2.0% to 3.2%. However, for Hispanics, this is proportionally less than their increase in the population.
  • Algae as Hydrogen Factory

    Mutant Algae Is Hydrogen Factory by Sam Jaffe, Wired:

    Researchers at the University of California at Berkeley have engineered a strain of pond scum that could, with further refinements, produce vast amounts of hydrogen through photosynthesis.

    The work, led by plant physiologist Tasios Melis, is so far unpublished. But if it proves correct, it would mean a major breakthrough in using algae as an industrial factory, not only for hydrogen, but for a wide range of products, from biodiesel to cosmetics.
    ….
    Melis got involved in this research when he and Michael Seibert, a scientist at the National Renewable Energy Laboratory in Golden, Colorado, figured out how to get hydrogen out of green algae by restricting sulfur from their diet. The plant cells flicked a long-dormant genetic switch to produce hydrogen instead of carbon dioxide. But the quantities of hydrogen they produced were nowhere near enough to scale up the process commercially and profitably.

    “When we discovered the sulfur switch, we increased hydrogen production by a factor of 100,000,” says Seibert. “But to make it a commercial technology, we still had to increase the efficiency of the process by another factor of 100.

    Water and Electricity for All

    Segway Creator Unveils His Next Act

    Water and Electricity may not seem like something to wish for if you are reading this post. However for over 1 billion people that do without both it is.

    Dean Kamen, the engineer who invented the Segway, is puzzling over a new equation these days. An estimated 1.1 billion people in the world don’t have access to clean drinking water, and an estimated 1.6 billion don’t have electricity. Those figures add up to a big problem for the world and an equally big opportunity for entrepreneurs.

    To solve the problem, he’s invented two devices, each about the size of a washing machine that can provide much-needed power and clean water in rural villages.

    “Eighty percent of all the diseases you could name would be wiped out if you just gave people clean water,” says Kamen. “The water purifier makes 1,000 liters of clean water a day, and we don’t care what goes into it. And the power generator makes a kilowatt off of anything that burns.”

    Kamen’s goal is to produce machines that cost $1,000 to $2,000 each. That’s a far cry from the $100,000 that each hand-machined prototype cost to build.

    Quadir is going to try and see if the machines can be produced economically by a factory in Bangladesh. If the numbers work out, not only does he think that distributing them in a decentralized fashion will be good business — he also thinks it will be good public policy. Instead of putting up a 500-megawatt power plant in a developing country, he argues, it would be much better to place 500,000 one-kilowatt power plants in villages all over the place, because then you would create 500,000 entrepreneurs.

    More products from his company, Deka Research & Development Corp, including: Hydroflexâ„¢ Irrigation Pump, IBOTâ„¢ Mobility System and Intravascular Stent.

    Dean Kamen understands what engineering can do. “Today, almost 200 engineers, technicians, and machinists work in our electronics and software engineering labs, machine shop, and on CAD stations.”

    DEKA’s mission, first and foremost, is to foster innovation. It is a company where the questioning of conventional thinking is encouraged and practiced by everyone—engineers and non-engineers alike—because open minds are more likely to arrive at workable solutions. This has been our formula for success since we began, and it will continue to drive our success in the future.

    Dean Kamen founded For Inspiration and Recognition of Science and Technology (FIRST)

    Phony Science Gap?

    A Phony Science Gap? by Robert Samuelson:

    And the American figures excluded computer science graduates. Adjusted for these differences, the U.S. degrees jump to 222,335. Per million people, the United States graduates slightly more engineers with four-year degrees than China and three times as many as India. The U.S. leads are greater for lesser degrees.

    It is good to see more people using the data from the Duke study we have mentioned previously: USA Under-counting Engineering GraduatesFilling the Engineering Gap. However, I think he misses a big change. It seems to me that the absolute number of graduates each year is the bigger story than that the United States has not lost the percentage of population rate of science and engineering graduates yet. China significantly exceeds the US and that India is close to the US currently in science and engineering graduates. And the trend is dramatically in favor of those countries.

    There has been a Science gap between the United States and the rest of the world. That gap has been between the USA, in the lead, and the rest. That gap has been shrinking for at least 10 years and most likely closer to 20. The rate of the decline in that gap has been increasing and seems likely to continue in that direction.

    Despite an eroding manufacturing base and the threat of “offshoring” of some technical services, there’s a rising demand for science and engineering skills. That may explain higher enrollments and why this “crisis” — like the missile gap — may be phony.

    I wonder what eroding manufacturing base he is referring to? The United States is the world’s largest manufacturer. The United States continues to increase its share of the world manufacturing and increase, incrementally year over year. Yes manufacturing employment has been declining (though manufacturing employment has declined far less in the United States than in China). Granted China has been growing tremendously quickly, but they are still far behind the United States in manufacturing output.
    Continue reading

    Spray-On Solar-Power Cells

    Spray-On Solar-Power Cells Are True Breakthrough by Stefan Lovgren for National Geographic News:

    The plastic material uses nanotechnology and contains the first solar cells able to harness the sun’s invisible, infrared rays. The breakthrough has led theorists to predict that plastic solar cells could one day become five times more efficient than current solar cell technology.

    At a current cost of 25 to 50 cents per kilowatt-hour, solar power is significantly more expensive than conventional electrical power for residences. Average U.S. residential power prices are less than ten cents per kilowatt-hour, according to experts.

    But that could change with the new material.

    “Flexible, roller-processed solar cells have the potential to turn the sun’s power into a clean, green, convenient source of energy,” said John Wolfe, a nanotechnology venture capital investor at Lux Capital in New York City.

    Engineering Graduates Get Top Salary Offers

    table of highest paid degrees

    Most lucrative college degrees by David Ellis, CNNMoney.com:

    The data reflects, college seniors in most majors are experiencing an increase in starting-salary offers, according to a quarterly survey published by the National Association of Colleges & Employers’ (NACE). 83 private and public schools were included in this survey.

    Topping the list of highest-paid majors were chemical engineers who fetched $55,900 on average, followed by electrical engineering degrees at $52,899. Despite taking a 0.3 percent dip compared to the 2004-2005 academic year, mechanical engineers took third place with an average salary of $50,672.

    Last year 6 of the to 7 highest paid degrees were in engineering (computer science was in 4th place). The graphic to the left leaves off: computer engineering, aerospace engineering and industrial engineering.

    NACE press release on salary data

    Related Links:

    2004 National Medal of Science and Technology

    Dr. Borlaug receives National Medal of Science

    The United States National Medals of Science and Technology were presented today at the White House. The photo shows Dr. Norman E. Borlaug, Texas A&M, receiving the National Medal of Science from President Bush. Eight National Medals of Science were presented (Dr. Dennis P. Sullivan, City Univ. of NY; Dr. Phillip A. Sharp, Massachusetts Institute of Technology; Dr. Robert N. Clayton, The University of Chicago; Dr. Stephen J. Lippard, Massachusetts Institute of Technology; Dr. Kenneth J. Arrow, Stanford University; Dr. Norman E. Borlaug, Texas A&M University; Dr. Edwin N. Lightfoot, University of Wisconsin – Madison; Dr. Thomas E. Starzl, University of Pittsburgh School of Medicine). George Lucas, of Star Wars fame, received a National Medal of Technology awarded to his company: Industrial Light & Magic.

    UW’s Lightfoot to get major science award:

    Developers of heart-lung machines, kidney dialysis equipment and pressure chambers to simulate the deepest oceans have used Edwin N. Lightfoot’s research.

    The 80-year-old UW-Madison chemical and biological engineering professor is to receive the National Medal of Science today from President Bush at the White House.

    “Ed’s work formed the foundation for a great deal of the work in chemical and biomedical engineering,” said Tom Kuech, 51, chairman of the UW Chemical and Biological Engineering Department.

    “What’s even more remarkable is that he can run circles around most people. He’s a very sought-after speaker for his views on changes in engineering education.”

    National Technology Medals were awarded to: Roger L. Easton, Ralph H. Baer, Motorola, IBM, Gen-Probe Inc., Industrial Light and Magic and PACCAR Inc.

    Concentrating Solar Collector wins UW-Madison Engineering Innovation Award

    Solar Collector

    An inexpensive, modular solar-energy technology that could be used to heat water and generate electricity (see photo) won $12,500 and took first place in both the Schoofs Prize for Creativity and Tong Prototype Prize competitions, held Feb. 9 and 10 during Innovation Days on the UW-Madison College of Engineering campus.

    In a package about the size of a small computer desk, the winning system uses a flat Fresnel lens to collect the sun’s energy and focus it onto a copper block. Then a unique spray system removes the energy from the copper block and converts it into steam, says inventor Angie Franzke, an engineering mechanics and astronautics senior from Omro, Wisconsin. The steam either heats water for household use or powers a turbine to generate electricity.

    Other 2006 Schoofs Prize for Creativity winners include:

    * Second place and $7,000 — William Gregory Knowles, for the OmniPresent Community-Based Response Network, a personal, business or industrial security system that draws on networked users and devices to more efficiently verify burglar alarms, fire alarms or medical emergencies.
    * Third place and $4,000 — Garret Fitzpatrick, Jon Oiler, Angie Franzke, Peter Kohlhepp and Greg Hoell for the Self-Leveling Wheelchair Tray, a stowable working surface for wheelchairs that self-levels, even when the wheelchair is tilted or reclined up to a 45-degree angle.

    Read more about the 2006 competition