Category Archives: Engineering

Bill Dietrich Gives Carnegie Mellon University $265 Million

Carnegie Mellon is one of the crown jewels of engineering in the USA. While we are busy squandering the economic gains gained through science and engineering investments in the 1950’s, 60’s and 70’s a few universities are continuing to provide huge economic benefit: MIT, Stanford, CalTech, Harvard, University of Wisconsin – Madison… Schools unfortunately seem to be wasting lots of money (on vanity projects and ever increasing administration, and huge pay to overpaid executives), but even so they provide much much more benefit than the costs. Funding from rich, successful businesspeople (Bill Dietrich was a steel executive) is now a huge reason these shiny lights of the American economy continue to shine. On Bill Dietrich’s donation:

This fund, which will become operational upon Dietrich’s passing, will serve as a catalyst for the university’s global initiatives and for its fusion of left-brain and right-brain thinking, such as studies connecting technology and the arts, as well as support future academic initiatives across the university, including undergraduate and graduate programs, scholarship, artistic creation and research.
The gift furthers the university’s ability to educate students in strong interdisciplinary problem-solving and supports the unique recipe for education offered by Carnegie Mellon’s seven schools and colleges, all of which are leaders in their fields.

Dietrich’s gift, among the 10 largest in the United States, is believed to be the 14th largest gift to higher education worldwide.

Related: Board of Trustees gets new chairperson: Dietrich (July 2001 article)$400 Million More for Harvard and MITEconomic Strength Through Technology LeadershipStanford Gets $75 Million for Stem Cell CenterGreat Engineering Schools and Entrepreneurism

Synthetic Biologists Design a Gene that Forces Cancer Cells to Commit Suicide

Killing a cancer cell from the inside out

To create their tumor-killing program, the researchers designed a logic circuit — a system that makes a decision based on multiple inputs. In this case, the circuit is made of genes that detect molecules specific to a type of cervical cancer cell. If the right molecules are present, the genes initiate production of a protein that stimulates apoptosis, or programmed cell death. If not, nothing happens.

Because the genes used to create the circuits can be easily swapped in and out, this approach could also yield new treatments or diagnostics for many other diseases, according to Ron Weiss, an MIT associate professor of biological engineering and one of the leaders of the research team. “This is a general technology for disease-state detection,” he says.

the researchers created a synthetic gene for a protein, called hBax, that promotes cell death. They designed the gene with two separate safeguards against the killing of healthy, non-HeLa cells: It can be turned off by high levels of microRNAs that are ordinarily low in HeLa, and can also be deactivated by low levels of microRNAs that are normally plentiful in HeLa. A single discrepancy from the target microRNA profile is enough to shut off production of the cell-death protein.

If all microRNA levels match up with the HeLa profile, the protein is produced and the cell dies. In any other cell, the protein never gets made, and the synthetic genes eventually break down.

More very cool research. It is exciting to see how much can be done when we invest in science and engineering research. Of course the path from initial research to implemented solutions is long and complex and often fails to deliver on the initial hopes. But some remarkable breakthroughs achieve spectacular results that we benefit from every day.

Related: Cancer VaccinesResearchers Find Switch That Allows Cancer Cells to SpreadGlobal Cancer Deaths to Double by 2030Cloned Immune Cells Clear Patient’s Cancer

Cutting the Boarding Time of Planes in Half

I thought I wrote about this several years ago, but I guess I didn’t (I can’t find it, if I did). Experimental test of airplane boarding methods:

The Ste en method, on the other hand, orders the passengers in such a way that adjacent passengers in line are sitting in corresponding seats two rows apart from each other (e.g., 12A, 10A, 8A, 6A, etc.). This method trades a small number of aisle interferences at the front of the cabin, for the benefit of having multiple passengers stowing their luggage simultaneously. Other methods, such as Wilma and the Reverse Pyramid also realize parallel use of the aisle in a natural way as adjacent passengers are frequently sitting in widely separated rows.

We have seen experimentally that there is a marked difference in the time required to board an aircraft depending upon the boarding method used. The evidence strongly supports the heuristic argument from Ste en that methods that parallelize the boarding process by more efficiently utilizing the aisle (having more passengers stow their luggage simultaneously) will board more quickly than those that do not. The relative benefit of the application of this theory will grow with the length of the aircraft. Here, we used a 12-row mock airplane, but a more typical airplane with twice that number of rows will gain more by the implementation of parallelized boarding methods.

How this improvement scales with the cabin length is different for each method. For the Ste en method, the benefit will scale almost linearly. If the airplane is twice as long, the time savings will be nearly twice as much since the density of luggage-stowing passengers will remain the same and the boarding will still be maximally parallel. For Wilma and random boarding the benefit will not be as strong since the benefits of parallel boarding are randomly distributed along the length of the cabin instead of being regularly distributed.

I am not optimistic that airlines will even test out this method. People tend to think companies apply sensible, proven concepts and methods. But that is much less likely to be done than people think. The failure of many places to use simple queuing theory improvement (customers should form one line and be served the next available person not form many individual lines) is one example of failures by companies to apply decades old proven better methods. The poor adoption of multivariate designed experiments is another. Applying better ideas is a process that is not done very efficiently in business, health care, education or even science and engineering – in fact in any human endeavor. This is a waste that impacts each of us every day. It is also an opportunity for you to gain advantages just by applying all the good ideas lying around that others are ignoring. You need to test the ideas out in your setting (using the PDSA cycle in an organizational context a good method).

Related: Engineering the Boarding of AirplanesSuccessful Emergency Plane Landing in the Hudson RiverChecklists Save LivesImproving Engineering Education

Swarmanoid: Cooperative Robot Networks

Very cool cooperation between robots. It seems more and more research is going on in cooperative robotics. It would seem this would let us have specialized robots for various tasks instead of having to have robots that can do everything (which is very complex and difficult). Plus cooperating robots are just cool. See the Swarmanoid project web site and the overarching Swarmbot site. I look forward to what these scientists and engineers can create for us.

Related: Robots Working Together to Share Talents (2006)Autonomous Helicopters Teach Themselves to FlyUnderwater Robots Collaborate

Career Prospect for Engineers Continues to Look Positive

As I have written previously the career prospects for engineers are bright around the globe. Many countries realize the importance of engineering and have taken steps to compete as a center of excellence for engineering. It is a smart economic policy. Ironically, the USA, that did such a great job at this in the 1960’s and 1970’s, has been falling down in this regard. A significant reason for this is the USA can only fund so many things and a broken health care system, military complex, bailouts to bankers (trust fund babies and others) cost a lot of money. You chose what to fund, and those are taking much of the available USA funds. There are also non-economic reasons, such as the turn in the last decade in the USA to make the barriers for foreigner engineers (and others) to go through to go to school, visit and stay in the USA have all increased dramatically.

Back to the prospects for engineers: their are shortages of good engineers all over (and the future projections don’t show any reason to believe this will change). Germany Faces a Shortage of Engineers:

In June, the Association of German Engineers (VDI) reported that there were 76 400 vacant engineering jobs—an all-time high.

Policymakers in Berlin have responded to the shortage of skilled workers with a number of measures, including changes in immigration rules that allow German companies to hire engineers from other countries, including those outside of the European Union. Among them: The annual salary that companies must pay foreigners has been lowered from 60,000 Euro (US $95,000) to 40,000 Euro, which is roughly the starting salary of an engineering graduate in Germany…

To make it easy for engineers to move around Europe, engineering associations and other groups across Europe are working with the European Commission (the executive arm of the European Union) to launch the new Engineering Card. The card, which German engineers can apply for now and other countries are planning to launch, provides standardized information about the engineer’s qualifications and skills for greater transparency.

“We don’t expect many engineers will come, because among other reasons, there is a shortage of engineers across Europe,”

Related: Engineering Again Dominates The Highest Paying College Degree ProgramsS&P 500 CEO’s: Engineers Stay at the TopChina’s Technology Savvy LeadershipEngineers: Future ProspectsEconomic Strength Through Technology Leadership

Continue reading

MIT Engineering Design Workshop for Boston High School Students

This summer, a few dozen Boston-area high school students chose to spend their mornings toiling away with a variety of materials to create working marvels of engineering in the Engineering Design Workshop, a month-long program that gives teenagers a hands-on experience with the joys and challenges of engineering.

None of the activities are prescribed; instead, students take part in brainstorming sessions on the first day, and things develop from there. Typically, the “counselors” — a mix of undergraduate and graduate students from MIT and other local universities — present a few ideas, and the high school students decide which projects they’d most like to work on. I really like the idea of involving the college students.

This year, the 22 students divided themselves into five projects: a modified Razor scooter, equipped with a motor and brakes; a sound system of giant tower speakers; remote-controlled “anything” (which ended up including cars, fish, birds and even a flying turtle); a mosaic tiger meticulously assembled from pieces of stained glass; and an electric cello.

Each student is allotted $100 to spend on materials for his or her group’s project; this way, projects that attract more students have a larger budget to work with. Counselors help them purchase supplies online and work with them on the construction from the ground up.

There are probably thousands of similar type activities throughout the year to help engage students in engineering. I think it is great, but we need to do more. We need to let young students know what they are missing. If people know the wonders of engineering and choose something else for their career path, that is fine. It is a shame when people don’t get to decide, because they never experience what engineering has to offer.

Read the full press release.

Related: Infinity Project: Engineering Education for Today’s ClassroomRutgers Initiative to Help Disadvantaged ChildrenInspirational EngineerWhat Kids can Learn on Their Own

EZ-Builder Robot Control Software

You can get EZ-Builder Robot Control Software and try this out yourself.

Not a programmer? No problem! The EZ-Builder application allows non-programmers to easily build robots using advanced functions of the EZ-B Robot Controller. It is a Microsoft Windows application that gives you remote and scripting control of your custom robot design. Within the application, you add Controls that mimic your robot’s configuration. There are many controls for speakers, iRobot Roomba, HBridge, Servos, Cameras, Voice Recognition, Joysticks and more! There is even an easy scripting language so you may create short animations, interactions or initialization routines for your robot.

Using a Dremel, hot glue gun, screw drivers and various other tools, you can begin modifying the toy shell to fit your servos. For wheels or mobility, use continuous rotation modified servos. For arms and neck, use a standard servo. To allow your robot to see for object detection, use a Sharp IR Distance Sensor or a HC-SR04 Ultrasonic Ping Sensor.

Related: Arduino: Open Source Programmable HardwareRobots That Start as Babies Master Walking Faster Than Those That Start as AdultsRobot Built Largely From Old TV Parts

PBS Newshour on Maker Faire

The maker movement is excellent. As the program suggests it also serves to show many people enjoy engineering and making things work. Kids love to learn to accomplish things. Memorizing boring science details is not as interesting or a very useful way to create the kinds of innovative scientists and engineers that can aid our economy.

Related: Teaching Through TinkeringMaking Electricity from WindHome Halloween Engineering: Gaping Hole Costume

NASA’s Mars Curiosity Rover

Curiosity is the name of the new rover from NASA. It will be launched to continue the exploration of Mars so successfully done by Spirit and Opportunity (2 previous Mars rovers that did some amazing work and laster years longer than expected). The rover is NASA’s Mars Science Laboratory, a mobile robot for investigating Mars’ past or present ability to sustain microbial life.

photo of NASA's Mars Rover: Curiosity

Once on the surface, the rover will be able to roll over obstacles up to 75 centimeters (29 inches) high and travel up to 90 meters per hour. On average, the rover is expected to travel about 30 meters per hour, based on power levels, slippage, steepness of the terrain, visibility, and other variables.

The rover is about the size of a small SUV — 10 feet long (not including the arm), 9 feet wide and 7 feet tall. It weighs 900 kilograms (2,000 pounds)

The rover will carry a radioisotope power system that generates electricity from the heat of plutonium’s radioactive decay. This power source gives the mission an operating lifespan on Mars’ surface of a full martian year (687 Earth days) or more, while also providing significantly greater mobility and operational flexibility, enhanced science payload capability, and exploration of a much larger range of latitudes and altitudes than was possible on previous missions to Mars.

Related: Mars Rover Continues ExplorationMars Rovers Getting Ready for Another Adventure (2007)Sunset on Mars

Evolution of Altruism in Robots

The webcast explores robots evolving cooperative behavior. A Quantitative Test of Hamilton’s Rule for the Evolution of Altruism (open access paper)

One of the enduring puzzles in biology and the social sciences is the origin and persistence of altruism, whereby a behavior benefiting another individual incurs a direct cost for the individual performing the altruistic action. This apparent paradox was resolved by Hamilton’s theory, known as kin selection, which states that individuals can transmit copies of their own genes not only directly through their own reproduction but also indirectly by favoring the reproduction of kin, such as siblings or cousins. While many studies have provided qualitative support for kin selection theory, quantitative tests have not yet been possible due to the difficulty of quantifying the costs and benefits of helping acts. In this study, we conduct simulations with the help of a simulated system of foraging robots to manipulate the costs and benefits of altruism and determine the conditions under which altruism evolves.

By conducting experimental evolution over hundreds of generations of selection in populations with different costs and benefits of altruistic behavior, we show that kin selection theory always accurately predicts the minimum relatedness necessary for altruism to evolve. This high accuracy is remarkable given the presence of pleiotropic and epistatic effects, as well as mutations with strong effects on behavior and fitness. In addition to providing a quantitative test of kin selection theory in a system with a complex mapping between genotype and phenotype, this study reveals that a fundamental principle of natural selection also applies to synthetic organisms when these have heritable properties.

Related: Robots That Start as Babies Master Walking Faster Than Those That Start as AdultsFriday Fun: Robocup 2010, Robot FootballToyota Develops Thought-controlled Wheelchair
Continue reading