Category Archives: Engineering

Quixperito – New Social Bookmarking Site

I have created a new social bookmarking site. The site is meant to highlight good content online and is moderated to remove low value and spam content. By developing a community of users that share interests in worthwhile content on a variety of topics I hope to create a useful resource for people.

The topics included now are limited to help focus on high value content and develop a community of users around various topics. Please join and participate. Without a community the value of the site is low. Currently there is a technology section that will be of interest to readers of this Curious Cat Science and Engineering Blog.

Other sections include: science, investing and business.

If you are interested in helping build the community please join and participate. You can post your related articles and posts and find new readers for your content. And by voting on others posts you can help highlight posts that the community finds worth reading.

Related: Curious Cat science and engineering search enginescience and engineering links

Help Science Education in Tanzania

Students in Tazania using a microscope

Diana Hall, a physics teacher from Bell High School, Ottawa, Canada is spending 6 months in Tanzania helping build a more active science program. This reminds me of my time in Nigeria (while my father taught Chemical Engineering at the University of Ile Ife to help build a strong university program). It is great to see all the good that people are willing to do.

The objective of the Do Science, Tanzania project is to share teaching strategies and equipment with science teachers and students in Moshi, Tanzania. The goal is to facilitate a more active science program and to inspire students to continue studying beyond the secondary level.

The photo shows students at Reginald Mengi Secondary school, Tanzania, getting their first experience with microscopes in the classroom. There are over 210 Form I (freshman in high school, for you USA readiers) students in 4 classes. The 4 classes had an introduction to the microscope by preparing slides and viewing onion cells.

Working with science teachers is a big part of do Do Science is about. Their blog discusses a recent meeting where 50 science teachers from the Moshi area attended a workshop. The teachers at the workshop modeled thinking exercises, conducted sample labs, investigated computer simulations and interfacing equipment, looked at some DVD resources. and networked.

You can help by donating equipment or money. Or if you are a science teacher with workshop and leadership experience who would consider spending some time in Tanzania as a facilitator?

Related: Learning Design of Experiments with Paper HelicoptersFund Teacher’s Science ProjectsScience Education ResourcesWays to Help Make the World Better

Continue reading

Engineering Graduates Earned a Return on Their Investment In Education of 21%

A recent report from the New York Fed looks at the economic benefits of college. While there has been a great deal of talk about the “bubble” in higher education the Fed finds college is very wise economically for most people. They do find a larger portion of people that are not getting a great return on their investment in higher education.

That could well indicate students studying certain majors and perhaps some people with less stellar academic skills would be better off economically skipping college.

Do the Benefits of College Still Outweigh the Costs?

an analysis of the economic returns to college since the 1970s demonstrates that the benefits of both a bachelor’s degree and an associate’s degree still tend to outweigh the costs, with both degrees earning a return of about 15 percent over the past decade. The return has remained high in spite of rising tuition and falling earnings because the wages of those without a college degree have also been falling, keeping the college wage premium near an all-time high while reducing the opportunity cost of going to school.

It is hard to beat a 15% return. Of course averages hide variation within the data.

The return to engineer graduates was the greatest of all disciplines examined. Engineering graduates earned a return on their investment of 21%. The next highest were math and computers (18%); health (18%); and business (17%). Even the lowest returns are quite good: education (9%), leisure and hospitality (11%), agriculture (11%) and liberal arts (12%).

These returns look at graduates without post-graduate degrees (in order to find the value of just the undergraduate degree). As those with higher degrees benefit even more but the return on graduate degrees is not part of this study and they didn’t want to confuses the benefits of the post graduate degree with the bachelors degree.

As the article points out those fields with the top returns are more challenging and likely those students are more capable on average so a portion of the return may be due to the higher capabilities of the students (not just to the major they selected). They don’t mention it but engineering also has a higher drop out rate – not all students that would chose to major in engineering are able to do so.

This is one more study showing what we have blog about many times before: science and engineering careers are very economically rewarding. The engineering job market remains strong across many fields; many companies are turning to engineering job placement firms to find specialized staff. While the engineers do voice frustration at various aspects of their jobs the strong market provides significant advantages to an engineering career. As I have said before the reason to chose a career is because that is the work you love, but in choosing between several possible careers it may be sensible to consider the likely economic results.

The study even examines the return for graduates that are continually underemployed (I am not really sure how they get this data, but anyway…) the return for engineers in this situation is still 17% (it is 12% across all majors).

Related: Earnings by College Major, Engineers and Scientists at the Top (2013)Engineering Graduates Continue to Reign Supreme (2013)Career Prospect for Engineers Continues to Look Positive (2011)

Engineering Graduates Earned a Return on Their Investment In Education of 21%

A recent report from the New York Fed looks at the economic benefits of college. While there has been a great deal of talk about the “bubble” in higher education the Fed finds college is very wise economically for most people. They do find a larger portion of people that are not getting a great return on their investment in higher education.

That could well indicate students studying certain majors and perhaps some people with less stellar academic skills would be better off economically skipping college.

Do the Benefits of College Still Outweigh the Costs?

an analysis of the economic returns to college since the 1970s demonstrates that the benefits of both a bachelor’s degree and an associate’s degree still tend to outweigh the costs, with both degrees earning a return of about 15 percent over the past decade. The return has remained high in spite of rising tuition and falling earnings because the wages of those without a college degree have also been falling, keeping the college wage premium near an all-time high while reducing the opportunity cost of going to school.

It is hard to beat a 15% return. Of course averages hide variation within the data.

The return to engineer graduates was the greatest of all disciplines examined. Engineering graduates earned a return on their investment of 21%. The next highest were math and computers (18%); health (18%); and business (17%). Even the lowest returns are quite good: education (9%), leisure and hospitality (11%), agriculture (11%) and liberal arts (12%).

These returns look at graduates without post-graduate degrees (in order to find the value of just the undergraduate degree). As those with higher degrees benefit even more but the return on graduate degrees is not part of this study and they didn’t want to confuses the benefits of the post graduate degree with the bachelors degree.

As the article points out those fields with the top returns are more challenging and likely those students are more capable on average so a portion of the return may be due to the higher capabilities of the students (not just to the major they selected). They don’t mention it but engineering also has a higher drop out rate – not all students that would chose to major in engineering are able to do so.

This is one more study showing what we have blog about many times before: science and engineering careers are very economically rewarding. The engineering job market remains strong across many fields; many companies are turning to engineering job placement firms to find specialized staff. While the engineers do voice frustration at various aspects of their jobs the strong market provides significant advantages to an engineering career. As I have said before the reason to chose a career is because that is the work you love, but in choosing between several possible careers it may be sensible to consider the likely economic results.

The study even examines the return for graduates that are continually underemployed (I am not really sure how they get this data, but anyway…) the return for engineers in this situation is still 17% (it is 12% across all majors).

Engineering Graduates Earned a Return on Their Investment In Education of 21%

A recent report from the New York Fed looks at the economic benefits of college. While there has been a great deal of talk about the “bubble” in higher education the Fed finds college is very wise economically for most people. They do find a larger portion of people that are not getting a great return on their investment in higher education.

That could well indicate students studying certain majors and perhaps some people with less stellar academic skills would be better off economically skipping college.

Do the Benefits of College Still Outweigh the Costs?

an analysis of the economic returns to college since the 1970s demonstrates that the benefits of both a bachelor’s degree and an associate’s degree still tend to outweigh the costs, with both degrees earning a return of about 15 percent over the past decade. The return has remained high in spite of rising tuition and falling earnings because the wages of those without a college degree have also been falling, keeping the college wage premium near an all-time high while reducing the opportunity cost of going to school.

It is hard to beat a 15% return. Of course averages hide variation within the data.

The return to engineer graduates was the greatest of all disciplines examined. Engineering graduates earned a return on their investment of 21%. The next highest were math and computers (18%); health (18%); and business (17%). Even the lowest returns are quite good: education (9%), leisure and hospitality (11%), agriculture (11%) and liberal arts (12%).

These returns look at graduates without post-graduate degrees (in order to find the value of just the undergraduate degree). As those with higher degrees benefit even more but the return on graduate degrees is not part of this study and they didn’t want to confuses the benefits of the post graduate degree with the bachelors degree.

As the article points out those fields with the top returns are more challenging and likely those students are more capable on average so a portion of the return may be due to the higher capabilities of the students (not just to the major they selected). They don’t mention it but engineering also has a higher drop out rate – not all students that would chose to major in engineering are able to do so.

This is one more study showing what we have blog about many times before: science and engineering careers are very economically rewarding. The engineering job market remains strong across many fields; many companies are turning to engineering job placement firms to find specialized staff. While the engineers do voice frustration at various aspects of their jobs the strong market provides significant advantages to an engineering career. As I have said before the reason to chose a career is because that is the work you love, but in choosing between several possible careers it may be sensible to consider the likely economic results.

The study even examines the return for graduates that are continually underemployed (I am not really sure how they get this data, but anyway…) the return for engineers in this situation is still 17% (it is 12% across all majors).

Engineering Again Dominates The Highest Paying College Degree Programs

As usual most of the highest paying undergraduate college degrees in the USA are engineering. Based on data from payscale, all of the top 10 highest paying fields are in engineering. The highest non-engineering fields are applied mathematics and computer science. Petroleum Engineering salaries have exploded over the last few years to $93,000 for a starting median salary, more than $30,000 above the next highest paying degree.

Mid-career median salaries follow the same tendency for engineering degrees, though in this case, 3 of the top 10 salaries (15 years into a career) are for those with non-engineering degrees: applied mathematics, physics and economics.

Highest Paid Undergrad College Degrees
Degree Starting Median Salary Mid-Career Median Salary 2009 starting salary
Petroleum Engineering $93,000 $157,000
Chemical Engineering $64,800 $108,000 $65,700
Nuclear Engineering $63,900 $104,000
Computer Engineering $61,200 $99,500 $61,700
Electrical Engineering $60,800 $104,000 $60,200
Aerospace Engineering $59,400 $108,000 $59,600
Material Science and Engineering $59,400 $93,600
Industrial Engineering $58,200 $97,400 $57,100
Mechanical Engineering $58,300 $97,400 $58,900
Software Engineering $56,700 $91,300
Applied Mathematics $56,400 $101,000
Computer Science $56,200 $97,700 $56,400

Related: PayScale Survey Shows Engineering Degree Results in the Highest Pay (2009)Engineering Majors Hold 8 of Top 10 Highest Paid Majors (2010)Engineering Graduates Get Top Salary Offers in 2006Shortage of Petroleum Engineers (2006)10 Jobs That Provide a Great Return on Investment

More degrees are shown in the following table, but this table doesn’t include all the degree; it just shows a sample of the rest of the degrees.
Continue reading

Wave Disk Engine Could Increase Efficiency 5 Times

Norbert Müller’s group has received $2.5 million from the U.S. Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) in 2010 to build and develop the wave disk engine, which uses turbo combustion “shock wave” technology to convert either liquid fuel or compressed natural gas or hydrogen into electrical power. With this engine, fuel efficiency for hybrid vehicles could increase 5 times compared to internal combustion engine vehicles on the road today (and 3.5 times less than current hybrid cars), while reducing costs by 30%. The goal of Müller’s team is to produce an engine that would give hybrid vehicles a 500-mile driving range and reduce carbon dioxide emissions by as much as 90%.

In the video he says they hope to have the engines in production vehicles within 3 years. My guess is he is being quite optimistic, but we will see. The new engine would allow 1,000 pounds to be removed from the weight of cars (by removing the need for drive train, radiator…).

Related: $10 Million X Prize for 100 MPG CarEconomic Benefits Brought by Investing in Engineering59 MPG Toyota iQ Diesel Available in Europe (2008)MIT Hosts Student Vehicle Design Summit (2006)

Votizen is Looking for Software Engineers

Link broken by pointy haired boss at Votizen, so I removed it. This phb behavior will make those of us who link to websites hesitant to trust anything Votizen posts will stay around 🙁

A nice presentation on why software engineers should work at Votizen.

Related: How To Become A Software Engineer/ProgrammerThe Software Developer Labor MarketWant to be a Computer Game Programmer?IT Talent Shortage, or Management Failure?

Google Summer of Code is Accepting Application Now

Google Summer of Code 2011 is accepting applications. This is a great initiative I have highlighted previously: Google Summer of Code 2009, Google Summer of Code 2008. The deadline for applications is April 8th.

Google Summer of Code is a program that offers student developers stipends to write code for various open source projects. The program has brought together over 4,500 students with over 300 open source projects, to create millions of lines of code. Participants (including students and mentors) have represented over 85 countries. The program, which kicked off in 2005, is now in its seventh year.

Participating organizations include: R Project for Statistical Computing, Debian Project, WordPress and the Marine Biological Laboratory. (9 of the 175 participating organizations list Ruby as part of their project :-).

For 2010 the effort had a budget of $5,000,000 and accepted 1026 students partnering with 150 Open Source organizations. This year they plan on 1,150 – 1,200 student positions. For 2007 they had 6,200 applications and 7,000 in 2008. I don’t see any data on applicants for 2009.

As for the application it should include the following: your project proposal, why you’d like to execute on this particular project, and the reason you’re the best individual to do so. Your proposal should also include details of your academic, industry, and/or open source development experience, and other details as you see fit. An explanation of your development methodology is a good idea, as well.

Related: Engineering Majors Hold 8 of Top 10 Highest Paid MajorsHow To Become A Software Engineer/Programmerposts from my management blog on software development