Category Archives: Engineering

Undersea Cables Cut Again – Reducing India’s Capacity by 65%

Once again a severed underwater cable has disrupted web access

Internet and phone communications between Europe, the Middle East, and Asia have been seriously disrupted after submarine cables were severed. It is thought the FLAG FEA, SMW4, and SMW3 lines, near the Alexandria cable station in Egypt, have all been cut.

A fault was also reported on the GO submarine cable 130km off Sicily. Experts warned that it may be days before the fault is fixed and said the knock on effect could have serious repercussions on regional economies.

It is thought that 65% of traffic to India was down, while services to Singapore, Malaysia, Saudi Arabia, Egypt, Taiwan and Pakistan have also been severely affected.

Earlier this year, the same line was damaged in the same area – off the Egyptian coast – although only two lines were snapped then. “We’ve lost three out of four lines. If the fourth cable breaks, we’re looking at a total blackout in the Middle East,” said Mr Wright.

“These three circuits account for 90% of the traffic and we’re going to see more international phone calls dropping and a huge degradation in the quality of local internet,” he added.

“Normally you would expect to see one major break per cable per year. With four you should have an insurance policy. For this to happen twice in one year, on the same cable, is a serious cause for concern.”

Related: How Do You Fix an Undersea Cable?Internet Undersea CablesInternet Underwater Fiber

BCS Title Game, Live in 3D

BCS title game to be available live in 3-D

Thanks to an impressive — though not glitch-free — test broadcast of an NFL game two weeks ago, Burbank, Calif.-based 3Ality Digital said Tuesday it had won the contract to shoot the Jan. 8 BCS National Championship game in 3-D.

The game between Florida and Oklahoma will be broadcast live in 3-D to 80 to 100 movie theaters in about 30 U.S. cities, said 3Ality Chairman David Modell. Tickets are expected to cost $18 to $22, said Cinedigm Digital Cinema Corp., which is working with 3Ality to deliver the broadcasts to theaters.

“The live broadcast to the Paris Hotel and to movie theaters across the nation is the latest example of how we can deliver our programming to audiences in new and exciting ways,” said Jerry Steinberg, senior vice president of field operations and engineering for FOX Sports. “3D technology holds unlimited potential for the future of both sports broadcasting and live event production.”

Cool, though not quite the holographic TV I am still waiting for.

Related: Video Goggles (like a portable 50″ TV screen)Magnetic MovieRandomization in Sports

Perceptions v. Objective Reality

User Interface Matters by Colleen Dick:

the earliest Hewlett Packard programmable calculators in the early 80’s. When engaging in lengthy number crunching, the calculator would print “crunching” (or processing, or something) on the display, and every few seconds it would add a dot, so the user would know something was happening.

HP engineers discovered that if they completely decoupled the display while serious crunching was going on, they could make the computations run 30-40% faster. Naturally they assumed the users would appreciate such a significant speed increase, so on their next revision, they just shut the screen down on lengthy computations.

Users complained about the slowdown! These are HP early adopters, mind you, mostly “rational” scientists and engineers. Remember, when objectively measured, the computations were measurably and significantly faster when the screen was decoupled!

In subjective time, the computations seemed slower without the feedback, even though in objective time we know they were faster.

There are times when objective improvement is most important, but there are also plenty of times when subjective improvement is more important. Often this difference is ignored.

Related: Packaging Improves Foot “Taste”The Psychology of Too Much Choice

StoryCorps: Passion for Mechanical Engineering

StoryCorps is an effort to record and archive conversations. NPR plays excerpts of one of the conversations each week, and they are often inspiring. They are conversation between two people who are important to each other: a son asking his mother about her childhood, an immigrant telling his friend about coming to America, or a couple reminiscing on their 50th wedding anniversary. By helping people to connect, and to talk about the questions that matter powerful recording are made. Yesterday I heard this one – A Bent For Building, From Father To Daughter:

“Can a girl be an engineer?” she asked her father. His answer: There was no reason she couldn’t.

Anne loved to take her things apart. It was mostly her toys — until the day she took a clock apart and spread its contents out.

When her father asked what had happened, his daughter answered, “Oh, I took it apart. Daddy fix.”

And as her dad put things back together, Anne would sit by, watching intently to see how things were made. “Did you ever notice that I always followed you around the shop, watching?” Anne asked Ledo.

“I thought there was a magnet hooked up to me and to you.”

Related: Tinker School: Engineering CampSarah, aged 3, Learns About SoapWhat Kids can LearnColored Bubbles

High School Inventor Teams @ MIT

Sadly MIT deleted the video after having it live for several years.

Lemelson-MIT InvenTeams is a national grants initiative of the Lemelson-MIT Program to foster inventiveness among high school students. The webcast above shows a high school team presenting a project they completed to create a solution to provide clean water. This stuff is great. I love appropriate technology. I love seeing kids think and create effective solutions to real problems. This is how you get kids to learn – not boring classes (at least kids like me).

The students are passing on the project to students at their school to continue to work on. (MIT TechTV used to have many more presentation by other InvenTeams – not anymore 🙁 ) InvenTeams and MIT deserve a great deal of credit for creating such great learning opportunities and great solutions for the world.

InvenTeams composed of high school students, teachers and mentors are asked to collaboratively identify a problem that they want to solve, research the problem, and then develop a prototype invention as an in-class or extracurricular project. Grants of up to $10,000 support each team’s efforts. InvenTeams are encouraged to work with community partners, specifically the potential beneficiaries of their invention.

Related: Water and Electricity for AllWater Pump Merry-go-RoundEngineering a Better World: Bike Corn-ShellerInspiring a New Generation of InventorsKids in the Lab: Getting High-Schoolers Hooked on Science

Engineers and Scientists in Congress

I started maintaining a list of Congressmen with PhDs and graduate degrees in science, engineering and math awhile back.

Please comment with any additions that you know of.

The following were re-elected:
Vernon Ehlers, Michigan, physics PhD; Rush Holt, New Jersey, physics PhD; John Olver, Massachusetts, chemistry PhD; Brian Baird, Washington, psychology PhD; Bill Foster, Illinois, physics PhD.

Other scientists, engineers and mathematicians that were reelected include: Ron Paul, Texas, biology BS, MD; Jerry McNerney, California, mathematics PhD; Dan Lipinski, Illinois, mechanical engineering BS, engineering-economic systems MS; Todd Akin, Mississippi, management engineering BS;Cliff Stearns, Florida, electrical engineering BS; Louise Slaughter, New York, microbiology BS; Joe Barton, Texas, industrial engineering BS, Pete Stark, California, engineering BS, Mike Honda, California.

Lost: Nancy Boyda, Kansas (BS chemistry).

Newly elected: Bill Cassidy, Louisiana (BS Biochemistry, MD); Pete Olson, Texas (BA computer science); Kurt Schrader, Oregon (Doctor of Veterinary Medicine); Martin Heinrich, New Mexico (BS engineering), Gregg Harper, Mississippi (BS chemistry), Joseph Cao, Mississippi (BA physics); Brett Guthrie, Virginia (BS mathematical economics); Erik Paulsen, Minnesota, mathematics BA; Parker Griffith, Alabama (BS chemistry, MD); Cynthia Lummis, Wyoming (BS animal science and biology).

Before you leap to the conclusion that scientists are taking over Congress, remember 2 things: 1) I have probably been missing plenty that were in congress already and 2) this is still a total of less than 10% with even a BS in science, math or engineering. I attempted to determine the status of all those newly elected this year.

Please comment, if you know of others in Congress with science and engineering backgrounds. If we get this list to be relative close to accurate then we can start tracking the total representation in congress and see if it is increasing, decreasing or randomly fluctuating over time.

Related: Scientists and Engineers in CongressChina’s Technology Savvy LeadershipScience and Engineering in PoliticsThe A to Z Guide to Political Interference in Science

The Chip That Designs Itself

The chip that designs itself by Clive Davidson , 1998

Adrian Thompson, who works at the university’s Centre for Computational Neuroscience and Robotics, came up with the idea of self-designing circuits while thinking about building neural network chips. A graduate in microelectronics, he joined the centre four years ago to pursue a PhD in neural networks and robotics.

To get the experiment started, he created an initial population of 50 random circuit designs coded as binary strings. The genetic algorithm, running on a standard PC, downloaded each design to the Field Programmable Gate Arrays (FPGA) and tested it with the two tones generated by the PC’s sound card. At first there was almost no evidence of any ability to discriminate between the two tones, so the genetic algorithm simply selected circuits which did not appear to behave entirely randomly. The fittest circuit in the first generation was one that output a steady five-volt signal no matter which tone it heard.

By generation 220 there was some sign of improvement. The fittest circuit could produce an output that mimicked the input – wave forms that corresponded to the 1KHz or 10KHz tones – but not a steady zero or five-volt output.

By generation 650, some evolved circuits gave a steady output to one tone but not the other. It took almost another 1,000 generations to find circuits that could give approximately the right output and another 1,000 to get accurate results. However, there were still some glitches in the results and it took until generation 4,100 for these to disappear. The genetic algorithm was allowed to run for a further 1,000 generations but there were no further changes.

See Adrian Thompson’s home page (Department of Informatics, University of Sussex) for more on evolutionary electronics. Such as Scrubbing away transients and Jiggling around the permanent: Long survival of FPGA systems through evolutionary self-repair:

Mission operation is never interrupted. The repair circuitry is sufficiently small that a pair could mutually repair each other. A minimal evolutionary algorithm is used during permanent fault self-repair. Reliability analysis of the studied case shows the system has a 0.99 probability of surviving 17 times the mean time to local permanent fault arrival. Such a system would be 0.99 probable to survive 100 years with one fault every 6 years.

Very cool.

Related: Evolutionary DesignInvention MachineEvo-Devo

Britain’s Doctors of Innovation

photo of Susannah FlemmingSusannah Fleming, a PhD student at the University of Oxford life sciences interface doctoral training centre. She is developing a monitoring system to assess children when they first present to medical care. Source

Minister of State for Science and Innovation, Lord Drayson, announced the £250million (about $370 million) initiative which will create 44 training centres across the UK and generate over 2000 PhD students. They will tackle some of the biggest problems currently facing Britain such as climate change, energy, our ageing population, and high-tech crime.

17 of the centers will put specific emphasis on integrating industrial and business skills with the PhD education. This approach to training has been extensively piloted by EPSRC through a small number of thriving Engineering Doctorate Centres and Doctoral Training Centres in Complexity Science, Systems Biology and at the Life Sciences Interface. This new investment builds on the success of these and will establish a strong group of centres which will rapidly establish a pre-eminent international reputation for doctoral training.

The multidisciplinary centres bring together diverse areas of expertise to train engineers and scientists with the skills, knowledge and confidence to tackle today’s evolving issues. They also create new working cultures, build relationships between teams in universities and forge lasting links with industry.

As I have said before I think countries are smart to invest in their science and technology futures. In fact I believe creating centers of science and technology excellence is a key to future economic wealth.

Full press release: £250 Million to Create New Wave of Scientists and Engineers for Britain

Related: UK Science and Innovation GrantsUK Science and Research FundingNew Engineering School for EnglandBasic Science Research FundingBest Research University Rankings, 2008 (UK second to USA)Britain’s big challenges will be met by doctors of innovation

Harnessing Light to Drive Nanomachines

A team led by researchers has shown that the force of light indeed can be harnessed to drive machines – when the process is scaled to nano-proportions. Their work opens the door to a new class of semiconductor devices that are operated by the force of light. They envision a future where this process powers quantum information processing and sensing devices, as well as telecommunications that run at ultra-high speed and consume little power.

The energy of light has been harnessed and used in many ways. The “force” of light is different — it is a push or a pull action that causes something to move. “While the force of light is far too weak for us to feel in everyday life, we have found that it can be harnessed and used at the nanoscale,” said team leader Hong Tang, assistant professor at Yale. “Our work demonstrates the advantage of using nano-objects as ‘targets’ for the force of light – using devices that are a billion-billion times smaller than a space sail, and that match the size of today’s typical transistors.”

Full Press release

Related: Nanotube-producing Bacteria Show Manufacturing PromiseSelf-assembling Nanotechnology in Chip ManufacturingSlowing Down Light3 “Moore Generations” of Chips at OnceManipulating Carbon Nanotubesposts on university research