Category Archives: Engineering

Webcast: Engineering Education in the 21st Century

National Academy of Engineering President, William A. Wulf, discusses the future of engineering education. Very good quick overview (skip to 1m 45s point for start of the speech) – see links below for additional resources. From the speech:

  • “the practices of engineering has changed enormously in the last 20 years and engineering education has changed hardly at all.”
  • “It is a disgrace: about half the students who start in engineering do not finish in engineering… we are not weeding out the poor students we are turning off half the students with the way that we teach”
  • “engineering schools generally have not provided courses for the general liberal arts students but they must.”

view the rest of the talk

Related: Educating the Engineer of 2020: NAE ReportEducating Engineers for 2020 and Beyond by Charles VestWomen Choosing Other Fields Over Engineering and MathEducating Engineering GeeksLeah Jamieson on the Future of Engineering EducationHouse Testimony on Engineering Education

Electrifying a New Generation of Engineers

Electrifying a New Generation of Engineers

Ybarra’s K-12 education efforts began informally in 1993 while he was a newly arrived professor at Duke, toting lasers and other captivating bits of engineering equipment to local schools to drum up excitement for science and engineering and an array of programs grew from there.

Based on his growing awareness of the value of hands-on learning, Ybarra was longing for a way to help get more hands-on learning into the classroom. A few years later, in 1999, he was able to secure his first significant grant in the area. With support from the National Science Foundation Ybarra formalized his interactions with local schools by establishing a fellowship program that would put Duke engineering students in the classrooms to vastly expand the number of schools impacted.

To date, Ybarra’s programs have impacted more than 150,000 kids, and with so many programs now in place and spreading, that number increases by about 50,000 students per year. But personal stories, rather than numbers, are what Ybarra finds most gratifying. “When students contact me years later to tell me that the experiences they had in my programs inspired them to pursue a career in engineering or one of the sciences, it gives me a very deep sense of satisfaction.”

Related: Engineering K-PhDEngineering a Better Blood Alcohol SensorPromoting Science and EngineeringYale Cultivates Young ScientistsHigh School Students in USA, China and India

William G. Hunter Award 2008: Ronald Does

The recipient of the 2008 William G. Hunter Award is Ronald Does. The Statistics Division of the American Society for Quality (ASQ) uses the attributes that characterize Bill Hunter’s (my father – John Hunter) career – consultant, educator for practitioners, communicator, and integrator of statistical thinking into other disciplines to decide the recipient. In his acceptance speech Ronald Does said:

The first advice I received from my new colleagues was to read the book by Box, Hunter and Hunter. The reason was clear. Because I was not familiar with industrial statistics I had to learn this from the authors who were really practicing statisticians. It took them years to write this landmark book.

For the past 15 years I have been the managing director of the Institute for Business and Industrial Statistics. This is a consultancy firm owned by the University of Amsterdam. The interaction between scientific research and the application of quality technology via our consultancy work is the core operating principle of the institute. This is reflected in the type of people that work for the institute, all of whom are young professionals having strong ambitions in both the academic world and in business and industry.

The kickoff conference attracted approximately 80 statisticians and statistical practitioners from all over Europe. ENBIS was officially founded in June 2001 as “an autonomous Society having as its objective the development and improvement of statistical methods, and their application, throughout Europe, all this in the widest sense of the words” Since the first meeting membership has grown to about 1300 from nearly all European countries.

Related: 2007 William G. Hunter AwardThe Importance of Management ImprovementDesigned ExperimentsPlaying Dice and Children’s Numeracy

Monitor-Merrimac Memorial Bridge-Tunnel

photo of Monitor-Merrimac Memorial Bridge-Tunnel photo of Hampton Roads Virginia Bridge-Tunnel

Now that is some cool engineering: a bridge that becomes a tunnel. The Monitor-Merrimac Memorial Bridge-Tunnel is a 4.6 miles (7.4 km) crossing for Interstate 664 in Hampton Roads, Virginia, USA. It is a four-lane bridge-tunnel composed of bridges, trestles, man-made islands, and tunnels under a portion of the Hampton Roads harbor where the James, Nansemond, and Elizabeth Rivers come together in the southeastern portion of Virginia.

If you like this post, please look at our other popular posts, and consider adding our blog feed to your blog reader. Posts such as: Bacteriophages: The Most Common Life-Like Form on Earth, Robot Finds Lost Shoppers and Provides Directions and The Engineer That Made Your Cat a Photographer

It was completed in 1992, after 7 years of construction, at a cost $400 million, and it includes a four-lane tunnel that is 4,800 feet (1,463 m) long, two man-made portal islands, and 3.2 miles (5.1 km) of twin trestle.

Photos by Virginia Department of Transportation. Details from wikipedia. Google satellite view of the bridge-tunnel.

Related: Extreme EngineeringCool Falkirk Wheel Canal LiftThe Dynamics of Crowd Disasters: An Empirical StudyA ‘Chunnel’ for Spain and MoroccoSwiss dig world’s Longest Tunnel

Reducing Poverty

photo of Rita Bashnet

Today is blog action day, which this year is focused on poverty. We have highlighted various uses of appropriate technology, many of which help those in poverty improve their lives. Such as: Water Pump Merry-go-Round and Smokeless Stove Uses 80% Less Fuel.

I am also very interested in using micro loans to help entrepreneur improve their lives – I have written about Kiva before. Kiva fellows are funded by Kiva (fellows are unpaid) to go to spend time in the countries Kiva facilitates loans for working with the local partners. This post is about Rita Bashnet (in photo) an entrepreneur from Nepal:

Field visits are by far the best part about being a Kiva Fellow. You’re given the opportunity to hop on a motorbike, hike up a village trail, and actually see the impact of a Kiva loan firsthand.

Five years ago, Ms. Rita took her first loan of NRs. 10,000 (USD $150) and purchased some extra seed and fertilizer in the hopes of expanding her small vegetable patch. With the profits from this initial investment and a second loan from Patan Business and Professional Women (they offer a graduated loan program), she then purchased her first dairy cow.

After hearing about a program that subsidized the installation of methane gas storage tanks, Ms. Rita took another loan and applied for the program. With this new system, she is now able to capture the valuable gas released from her cow’s waste in a simple controlled-release storage tank. Today she no longer purchases gas from the city and can even sell some during times of shortage.

Ms. Rita exemplifies the potential of microfinance. A combination of access to capital and strategic investment has allowed her and her family to drastically improve their economic situation in a short five years.

Great story, and exactly my hope for using capitalism to improve the standard of living for people around the globe.

If you haven’t loaned money through Kiva, please consider it now. If you do (or already have a Kiva page), send me your Kiva lender link and I will add it to Curious Cat Kivans. I would love to add more of our readers to that page.

Related: Using Capitalism to Make a Better WorldAppropriate TechnologyFixing the World on $2 a DayTrickle Up

Silk E.coli Sensors

“Edible Optics” Could Make Food Safer

Scientists at Tufts University’s School of Engineering have demonstrated for the first time that it is possible to design such “living” optical elements that could enable an entirely new class of sensors. These sensors would combine sophisticated nanoscale optics with biological readout functions, be biocompatible and biodegradable, and be manufactured and stored at room temperatures without use of toxic chemicals. The Tufts team used fibers from silkworms to develop the platform devices.

The possibility of integrating optical readout and biological function in a single biocompatible device unconstrained by these limitations is tantalizing. Silk optics has captured the interest of the Defense Department, which has funded and been instrumental in enabling rapid progress on the topic. The Defense Advanced Research Projects Agency (DARPA) awarded Tufts a research contract in 2007 and is funding Tufts and others on groundbreaking projects that could someday result in biodegradable optical sensing communications technology.

To form the devices, Tufts scientists boiled cocoons of the Bombyx mori silkworm in a water solution and extracted the glue-like sericin proteins. The purified silk protein solution was ultimately poured onto negative molds of ruled and holographic diffraction gratings with spacing as fine as 3600 grooves/mm.

The Tufts team embedded three very different biological agents in the silk solution: a protein (hemoglobin), an enzyme (horseradish peroxidase) and an organic pH indicator (phenol red). In the hardened silk optical element, all three agents maintained their activity for long periods when simply stored on a shelf. “We have optical devices embedded with enzymes that are still active after almost a year of storage at room temperature.

Related: E. Coli IndividualityScience Fair Project on Bacterial Growth on Packaged SaladsProtecting the Food Supplyposts on food

59 MPG Toyota iQ Diesel Available in Europe

image of seating in the toyota iQ

59 MPG Toyota iQ On Sale In Europe, US Plans Unclear

With lower carbon dioxide emissions than the Prius — around 159 grams of CO2 emitted per mile by the 1.0 liter gas engine and 166 g/mile for the diesel version — not only does the iQ deliver on fuel economy, but its straight-up conventional engine is a pollution winner too.

At just about 9.8 feet long, 5.5 feet wide and 4.9 feet tall, Toyota certainly has pulled of a near engineering miracle with the amount of stuff they’ve crammed into this tiny vehicle. Toyota claims the iQ can fit 3 adults and 1 child “comfortably.”

Toyota expects to sell about 80,000 of them a year in Europe.

I own some Toyota stock (and bought a bit more recently) based on their excellent management and production system and the results they have achieved (so I pay attention to what they are doing – plus I own them because they do things I see as wise so it is a self reinforcing dynamic). Business week recently wrote about Ford’s 65 mpg Diesel Car the U.S. Can’t Have.

I owned Ford stock back when they were adopting Deming based management principles but when they dropped those to pursue short sighted goals and poor management practices I sold and bought Toyota (turned out to be a very wise decision – my mistake was holding Ford too long hoping they would realize their mistake).

Related: Toyota Engineering Development ProcessToyota Cultivating Engineering TalentToyota Winglet, Personal TransportationToyota iUnitToyota iQ media kit (lots of details)

Toyota Cultivating Engineering Talent

Toyota has a knack for cultivating engineering talent

Toyota now has more than 1,000 York Township employees dedicated to conducting engineering services on vehicles for the North American market. Early on in its expansion project, the Japanese automaker displayed a canny understanding of how to cultivate talent and acquire engineers fresh out of college.

Toyota established a two-year internship program for recent engineering graduates at schools like the University of Michigan, Michigan State University, Lawrence Technological University and the University of Wisconsin. At the end of the two-year period, the automaker and the employee reach a mutual decision about whether the employee should continue working there.

Bruce Brownlee, senior executive administrator for external affairs for the Toyota Planning Center at the Toyota Technical Center, has said the company generated a “large pipeline” for engineering talent by leveraging the internship program.

Related: Engineering InternshipsToyota Engineering Development ProcessToyota RobotsToyota k-12 Science GrantsToyota Production System (TPS) management blog posts

Computer Chips to Catch Cactus Thieves

Feds to use computer chips to foil cactus thieves

Anyone thinking of swiping a stately saguaro cactus from the desert could soon be hauling off more than just a giant plant. National Park Service officials plan to imbed microchips in Arizona’s signature plant to protect them from thieves who rip them from the desert to sell them to landscapers, nurseries and homeowners.

The primary objective is deterrence, but the chips also will aid in tracking down and identifying stolen saguaros, said Bob Love, chief ranger at southern Arizona’s Saguaro National Park.

Saguaros are unique to the Sonoran Desert, 120,000 square miles covering portions of Arizona, California and the northern Mexican states of Baja California and Sonora. They’re majestic giants that can grow to heights of 50 feet, sprout gaggles of arms and weigh several tons. They can take 50 years to flower and 70 years before sprouting an arm.

Related: Fighting Elephant Poaching With ScienceMobile Phone-based Vehicle Anti-theft SystemNatural Park Visits Declining

$92 Million for Engineering Research Centers

photo of Alex Huabg

NSF Launches Third Generation of Engineering Research Centers with Awards Totaling $92.5 Million. Each of the 5 sites will receive will use $18.5 million over five-years. Each center has international university partners and partners in industry.

The NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), based at Iowa State University, seeks to transform the existing petrochemical-based chemical industry to one based on renewable materials.

The NSF Engineering Research Center for Future Renewable Electric Energy Delivery and Management (FREEDM) Systems, based at North Carolina State University, will conduct research to transform the nation’s power grid into an efficient network that integrates alternative energy generation and new storage methods with existing power sources.

The NSF ERC for Integrated Access Networks (CIAN), based at the University of Arizona, will conduct research to create transformative technologies for optical access networks that offer dramatically improved performance and expanded capabilities.

The NSF ERC for Revolutionizing Metallic Biomaterials, based at North Carolina Agricultural and Technical State University, aims to transform current medial and surgical treatments by creating “smart” implants for craniofacial, dental, orthopedic and cardiovascular interventions.

The NSF Smart Lighting ERC, based at Rensselaer Polytechnic Institute, aims to create new solid-state lighting technologies to enable rapid biological imaging, novel modes of communication, efficient displays and safer transportation.

Photo: Alex Huang will lead direct the research of ways to integrate renewable energy sources into the nation’s power grid at North Carolina State University.

Related: $75 Million for 5 New Engineering Research CentersNSF Awards $50 Million for Collaborative Plant Biology ProjectPresidential Early Career Award for Scientists and Engineersposts related to the United States National Science Foundation