Category Archives: Engineering

How Computers Boot Up

How Computers Boot Up

Things start rolling when you press the power button on the computer (no! do tell!). Once the motherboard is powered up it initializes its own firmware – the chipset and other tidbits – and tries to get the CPU running. If things fail at this point (e.g., the CPU is busted or missing) then you will likely have a system that looks completely dead except for rotating fans. A few motherboards manage to emit beeps for an absent or faulty CPU, but the zombie-with-fans state is the most common scenario based on my experience. Sometimes USB or other devices can cause this to happen: unplugging all non-essential devices is a possible cure for a system that was working and suddenly appears dead like this. You can then single out the culprit device by elimination.

If all is well the CPU starts running. In a multi-processor or multi-core system one CPU is dynamically chosen to be the bootstrap processor (BSP) that runs all of the BIOS and kernel initialization code. The remaining processors, called application processors (AP) at this point, remain halted until later on when they are explicitly activated by the kernel. Intel CPUs have been evolving over the years but they’re fully backwards compatible, so modern CPUs can behave like the original 1978 Intel 8086, which is exactly what they do after power up. In this primitive power up state the processor is in real mode with memory paging disabled. This is like ancient MS-DOS where only 1 MB of memory can be addressed and any code can write to any place in memory – there’s no notion of protection or privilege.

Related: Harvard Course on Understanding Computers and the InternetProgramming RubyBabbage Difference Engine In Lego

Pax Scientific

Nature Gave Him a Blueprint, but Not Overnight Success

Mr. Harman is a practitioner of biomimicry, a growing movement of the industrial-design field. Eleven years ago, he established Pax Scientific to commercialize his ideas, thinking that it would take only a couple of years to convince companies that they could increase efficiency, lower noise or create entirely new categories of products by following his approach.

His radical ideas have so far found a cautious reception in the aircraft, air- conditioning, boating, pump and wind turbine industries. Mr. Harman’s experience is not unusual. Rather than beating a path to the door of mousetrap designers, the world seems to actively avoid them.

Even in fields such as the computer industry, which celebrates innovation, systemic change can be glacial.

In another hopeful sign, a world that long ignored energy efficiency is suddenly thinking of nothing else. “We tried for years to promote energy conservation, and we couldn’t find one who was interested,” he said. “Now the world has done a U-turn.”

Yet another example that new knowledge is not enough. It takes much longer for good ideas to be put into practice than seems reasonable (until you get your head around the idea it takes a fair amount of time for new ideas to be adopted).

One positive aspect of this reality is that if you can take advantage of new ideas before others you can gain an advantage. It isn’t necessarily true that just because now everyone knows about some new idea that you have no opportunity to use the knowledge before others.

Related: The Future is EngineeringEngineering the Boarding of AirplanesReduce Computer Waste100 Innovations for 2006Innovation at GoogleEducational Institutions Economic Impact

The Science Barge

photo of the science barge in NYC
The Science Barge is a prototype, sustainable urban farm and environmental education center. It is the only fully functioning demonstration of renewable energy supporting sustainable food production in New York City. The Science Barge grows tomatoes, cucumbers, and lettuce with zero net carbon emissions, zero chemical pesticides, and zero runoff.

From May to October 2007, the Science Barge hosted over 3,000 schoolchildren from all five New York boroughs as well as surrounding counties as part of our environmental education program. In addition, over 6,000 adult visitors visited the facility along with press from around the world.

NY Sun Works: The Science Barge

Limited growing space means growing upwards, with stacked pots for strawberries, and vines that grow up to the ceiling and are then folded over to grow back down. Instead of using pesticides, pests are kept in check using ladybugs, parasitic wasps, and other predators as needed. Environmentally friendly substrates such as rice husks, coconut shells, and Earth Stone (recycled glass), are used to aerate the root systems for the plants.

Most fascinating of all was the Aquaponic system for providing nutrients to the plants using catfish. Nutrients from the plants and worms feed the catfish, who produce nitrogen-rich waste, which feeds the plants. Tilapia were originally used, but eventually replaced with catfish, which were better suited to the climate. The result of all this effort is a bounty of fresh fruits and vegetables given out to all the children who visit the barge.

Great stuff. Related: Science, Education and Communityother posts on environmental solutions

Printing Buildings

Projections indicate costs will be around one fifth as much as conventional construction. Using this process, a single house or a colony of houses, each with possibly a different design, may be automatically constructed in a single run, embedded in each house all the conduits for electrical, plumbing and air-conditioning.

The machine will cost between $500K to $700K for average size (2000 sq ft — 200 m2) detached houses. This is not much given that a concrete pump truck is now $300k-$400K. Note that with one machine numerous homes can be built. The first commercial machines to be available this year, 2008. The machine will be collapsible to form into an easy truck load. The unloading and setup will take between 1-2 hours.

Behrokh Khoshnevis is the visionary who has been driving this concept. He is the Director of the Center for Rapid Automated Fabrication Technologies (CRAFT) and Director of Manufacturing Engineering Graduate Program at USC.

Very cool stuff. Related: Open Source 3-D PrintingA plane You Can Print$35 million to the USC School of EngineeringContractor Warned NYC About CraneSandwich Brick, Reusing Waste Material

Antimicrobial Wipes Often Spread Bacteria

Can we ‘wipe out’ hospital MRSA?

Led by microbiologist Dr Jean-Yves Maillard, the study into the ability of antimicrobial-surface wipes to remove, kill and prevent the spread of such infections as MRSA, has revealed that current protocols utilised by hospital staff have the potential to spread pathogens after only the first use of a wipe, particularly due to the ineffectiveness of wipes to actually kill bacteria.

The team is now calling for a ‘one wipe – one application – per surface’ approach to infection control in healthcare environments.

The research, supported by a grant from the Wales Office of Research and Development for Health and Social Care, involved a surveillance programme observing hospital staff using surface wipes to decontaminate surfaces near patients, such as bed rails, and other surfaces commonly touched by staff and patients, such as monitors, tables and key pads, which were later replicated in the lab.

A three-step system was also developed to test the ability of several commercially available wipes to disinfect surfaces contaminated with strains Staphylococcus aureus, including MRSA and MSSA. The system tested the removal of pathogens, the transmission of them, and the anti-microbial properties of wipes.

It was found that the wipes were being applied to the same surface several times and used on consecutive surfaces before being discarded. It also revealed that although some wipes can remove higher numbers of bacteria from surfaces than others, the wipes tested were unable to kill the bacteria removed. As a result, high numbers of bacteria were transferred to other surfaces when reused.

“On the whole, wipes can be effective in removing, killing and preventing the transfer of pathogens such as MRSA but only if used in the right way. We found that the most effective way is to prevent the risk of MRSA spread in hospital wards is to ensure the wipe is used only once on one surface.”

Related: CDC Urges Increased Effort to Reduce Drug-Resistant Infectionshandwashing by medical care workers

Engineering Education in India

Report recommends steps to improve engineering education in India

The number of engineering doctorates awarded in India each year is about 1,000 which is less than one per cent of the total engineering graduate degrees awarded every year. The international comparison showed that, in most countries, the number of PhD degrees awarded annually range between 5-9 per cent of the engineering graduate degrees awarded. Involvement of industry to sponsor special doctoral fellowships was one of the ways to attract good students to the PhD programme, the report noted.

Majority of engineering graduates not employable: Experts

On the other hand, tier-I and tier-II colleges, namely the IITs, IISc and the NITs produce , less than 1% of engineering graduates, 20% M.Techs and 40% PhD in India

The issue is not the best universities which are excellent. But the huge numbers of graduates are not receiving that type of education.

Related: Engineering Education in India report (draft version)Asia: Rising Stars of Science and EngineeringBest Research University Rankings (2007)Education is OpportunityKorean Engineering EducationEngineering Education Worldwide

Robotic Prosthetic Arms for People

Dean Kamen latest invention was funded by DARPA. Once again he is doing amazing stuff. It is great what engineers can do (many worked together to get the progress so far) when given the opportunity. We need many more such efforts.

Dean Kamen Lends a Hand, or Two (August 2007):

DARPA has spent almost $25 million funding two independent teams, Mr. Kamen’s DEKA Research & Development Corp. and a group at Johns Hopkins’ University in an effort they hope will ultimately lead to commercial prosthesis that can be controlled from the human brain.

The innovation in the DEKA arm lies in its ultra light weight carbon shell, giving the user an exoskeleton with which to gain the leverage necessary to do some of the extraordinary things the system makes possible, such as lifting a 40 lb. weight.

To make the system function, the DEKA engineers coated the inside of the shell with a mosaic of thin air bladders that can be individually filled with air to offer padding and rigidity necessary to make possible normally ordinary tasks such as operating a portable power drill. When the arm is not in use the system deflates, or can even alternately fill and empty to offer a massage effect, so that it is not painful to wear for long periods.

The DEKA system is controlled by a joystick that is moved by the remaining portion of the user’s arm and by a second control mechanism in the user’s shoe. Mr. Kamen said that despite the complexity of controlling an ensemble of motors and mechanical servo devices, a user can gain basic functional control in just one day.

Related: Water and Electricity for AllR&D Magazine’s 2006 Innovator of the YearThe Engineer That Made Your Cat a PhotographerDesign for the Unwealthiest 90 PercentOpen Source 3-D Printing

New Iron Based Superconductors

Research Suggests Novel Superconductor Is in a Powerful Class All its Own

discovered surprising magnetic properties in the new superconductors that suggest they may have very powerful applications — from improved MRI machines and research magnets, to a new generation of superconducting electric motors, generators and power transmission lines. The research also adds to the long list of mysteries surrounding superconductivity, providing evidence that the new materials, which scientists are calling “doped rare earth iron oxyarsenides,” develop superconductivity in quite a new way

Early this year, Japanese scientists who had been developing iron-based superconducting compounds for several years, finally tweaked the recipe just right with a pinch of arsenic. The result: a superconductor, also featuring oxygen and the rare earth element lanthanum, performing at a promising -413 degrees F (26 K). The presence of iron in the material was another scientific stunner: Because it’s ferromagnetic, iron stays magnetized after exposure to a magnetic field, and any current generates such a field. As a rule, magnetism’s effect on superconductivity is not to enhance it, but to kill it.

Iron based superconductors might resist magnetic fields over 100 Tesla

The new superconductors seem like they will be able to make improved MRI machines and research magnets, a new generation of superconducting electric motors, generators and power transmission lines. Tesla is a unit of magnetic field strength; the Earth’s magnetic field is one twenty thousandth of a tesla.

Related: Superconducting SurpriseMystery of High-Temperature SuperconductivitySuperconductivity and Superfluidity

Quake Lake Danger

Quakes lakes risk ‘slurry tsunami’

This month’s 7.9 magnitude tremor spawned 34 so-called quake lakes, according to the International Association of Hydraulic Engineering and Research expert. The vast pools of water were created when the earthquake triggered landslides down plunging valleys, clogging rivers and turning them into fast-rising lakes. Twenty-eight quake lakes are at risk of bursting, according to Chinese state media agency Xinhua. But the one at Tangjiashan – on the Jianjiang river above the town of Beichuan – is the most precarious.

The delicate, tortuous work involves heavy machinery gingerly shifting debris from the dam, and engineers blasting dynamite to carefully punch holes in the mountain of rubble and soil – although experts warn this risks further destabilising the structure. Nearly 160,000 people in the disaster zone have already been evacuated in case the Tangjiashan quake lake bursts.

Troops and engineers are racing to carve a 500 metre (1,640 ft) channel out of the landscape and divert the water towards the Fujiang river. They aim to complete the giant sluice and begin draining the 300 million cubic metre capacity lake within 10 days. “Once the water begins to flow over the top of the dam there’s nothing you can do to stop it,” said Dr Alex Densmore, of Durham University’s Institute of Hazard and Risk Research.

Little wonder then that Premier Wen Jiabao says he regards draining the swelling quake lakes at China’s ground zero as the nation’s most urgent task.

Related: Quake Lifts Island Ten Feet Out of OceanCivil Engineers: USA Infrastructure Needs ImprovementChina’s Technology Savvy LeadershipMegaflood Created the English Channel

Women Choosing Other Fields Over Engineering and Math

graph of science and engineering degrees by gender in the USA 1966-2005

The graph shows college degrees granted in the USA. This topic sets up one for criticism, but I believe it is more important to examine the data and explore the possible ideas than to avoid anything that might be questioned by the politically correct police. An import factor, to me anyway, is that women are now graduating from college in far higher numbers than men. And in many science fields female baccalaureate graduates outnumber male graduates (psychology [67,000 to 19,000], biology[42,000 to 26,000], anthropology, sociology [20,000 to 8,000]) while men outnumber women in others (math [7,000 to 6,000], engineering [53,000 to 13,000], computer science [39,000 to 11,000], physics [3,000 to 900]).

Data on degrees awarded men and women in the USA in 2005, from NSF*:

Field Bachelors
  
Master’s
  
Doctorate
Women Men Women Men Women Men
Biology 42,283   25,699 4,870   3,229 3,105   3,257
Computer Science 11,235   39,329 5,078   12,742 225   909
Economics 8,141   17,023 1,391   2,113 355   827
Engineering 13,197   52,936 7,607   26,492 1,174   5,215
Geosciences 1,660   2,299 712   973 243   470
Physics 903   3,307 427   1,419 200   1,132
Psychology 66,833   19,103 12,632   3,444 2,264   211
Sociology 20,138   8,438 920   485 343   211
All S&E 235,197   230,806 53,051   66,974 10,533   17,405

What does this all mean? It is debatable, but I think it is very good news for the efforts many have made over the last few decades to open up opportunities for women. I still support efforts to provide opportunities for girls to get started in science and engineering but I think we have reached the day when the biggest concern is giving all kids better math and science primary education (and related extracurricular activities). Also continued focus and effort on the doctorate and professional opportunities for women is warranted.
Continue reading