Category Archives: Engineering

Inspirational Engineer

One of the topics I care about is engineers making a real difference in the world. I lived in Singapore and Nigeria while I was growing up and traveled widely. My father was a professor of engineering (chemical, industrial), statistics and business. He was very interested in applying technology and human knowledge to help people have better lives, and I share that interest.

People like William Kamkwamba are the people that are worthy of respect. I wish the USA was more focused on people that are worthy of attention, instead of who the news media choose to show and people choose to read about. At least a few of you seem to like reading about those I do, based on the traffic this blog receives (well actually that would be a pretty poor metric, let say the attention popular science sites, magazines, podcasts, TV shows… receive).

Another video with William at TED. I posted about William previously: Make the World Better and Home Engineering: Windmill for Electricity.

Related: Appropriate Technologyposts tagged: engineersWhat Kids can LearnWater and Electricity for All

Self-assembling Nanofibers Heal Spinal Cords in Mice

Self-assembling Nanofibers Heal Spinal Cords by Prachi Patel-Predd

An engineered material that can be injected into damaged spinal cords could help prevent scars and encourage damaged nerve fibers to grow. The liquid material, developed by Northwestern University materials science professor Samuel Stupp, contains molecules that self-assemble into nanofibers, which act as a scaffold on which nerve fibers grow.

Stupp and his colleagues described in a recent paper in the Journal of Neuroscience that treatment with the material restores function to the hind legs of paralyzed mice.

The new work is the first test for the material to heal spinal cord injuries in animals. And Kessler says that it worked better than the researchers expected. The researchers stimulated a spinal cord injury in mice and injected the material 24 hours later. They found that the material reduced the size of scars and stimulated the growth of the nerve fibers through the scars. It promoted the growth of both types of nerve fibers that make up the spinal cord: motor fibers that carry signals from the brain to the limbs, and sensory fibers that carry sense signals to the brain. What is more, the material encouraged the nerve stem cells to mature into cells that create myelin–an insulating layer around nerve fibers that helps them to conduct signals more effectively.

Related: Using Bacteria to Carry Nanoparticles Into CellsMicro-robots to ’swim’ Through VeinsNanowired at Berkeley

$25 Million to Princeton for Engineering Education

$25 million to support innovation in engineering education

The gift builds on Princeton’s longstanding strength in educating engineers who are broadly grounded in the liberal arts and can reach beyond purely technical approaches to achieve wise and creative solutions. The new center also seeks to extend those connections by creating and supporting engineering courses that attract liberal arts students. For all students, the center emphasizes entrepreneurship, leadership and service.

“The quality of life for all societies is increasingly connected to our ability to understand, enhance and use technologies,” said Keller. “Since the rise of civilization, engineering has been integral to the development of societies and has helped people lead richer and more satisfying lives. More than ever, we must equip our graduates to be effective and innovative in deploying technology in the service of our nation and all nations.”

Currently, 60 percent of nonengineering students at Princeton take at least one engineering course; one of the center’s goals is to push that percentage to 100. Princeton’s School of Engineering and Applied Science currently offers more than 20 courses that engage students from outside the engineering school. These courses place technology in a social and historical context, emphasize entrepreneurship and provide substantial exposure to issues such as energy, the environment, cybersecurity and telecommunications. The gift will strengthen those courses and encourage the development of new ones. It also will support internships, entrepreneurial activities and a vibrant program of lectures and visiting professorships from leaders in business, government and academics.

“We see all students as engineering students,” said Sharad Malik, director of the newly named Keller Center for Innovation in Engineering Education. “Despite its pivotal role in modern life, engineering has often been perceived as an isolated discipline. I am extremely grateful to have the Kellers’ support in pushing hard in a new direction, shaping an education that spans engineering, the sciences and the humanities and connects academic learning to societal needs.”

Related: $15 Million for San Jose State College of Engineering$25 Million for Marquette College of Engineering$35 million to the USC School of Engineering$75 Million for 5 New Engineering Research CentersArt of Science at Princeton

Engineers Without Borders

Engineering as diplomacy

You cannot look into the eyes of a child who is dying from a disease caused by drinking dirty water — something that rarely, if ever, happens in the United States — and not feel changed. You cannot stand before her parents without thinking, “I’m an engineer. There must be something I can do.”

A year later, I returned with 10 engineering students from the University of Colorado. We devised a rudimentary pumping system, bringing water to the people of San Pablo. Today, the village’s young girls go to school and are healthier.

That trip was a transforming experience, not just for the villagers, but also for me. Intuitively, we engineers like things big — expansive bridges, colossal dams, massive tunnels. My experience taught me that small-scale engineering can have the most impact on people’s lives.

When I returned to Boulder, I began building something else: Engineers Without Borders — USA. The organization was formed out of the conviction that engineers have a leadership role to play in addressing some of the world’s most serious problems: contaminated water, poor sanitation systems, expensive or harmful energy sources.

In a world focused on bigger and newer, there is growing recognition that small-scale engineering can play a major role in helping end the cycle of poverty that persists among almost half the world’s population. Studies by the World Bank and United Nations suggest the most basic technology is critical to bringing more than 3 billion people out of poverty.

Today EWB-USA counts more than 11,000 student and professional engineers as members and works in 43 countries on 300 projects involving water, sanitation, energy and shelter. Whether it’s combining sustainable technologies with advanced construction techniques to bring affordable housing to pockets of the world, drilling drinking water wells in Kenya, constructing fog collectors in the Himalayas to harvest fresh water or installing solar panels to provide energy for a remote hospital in Rwanda, we are healing communities throughout the globe, giving people dignity and hope for better lives.

Engineers without Borders is another vivid example of the benefits engineering brings to society.

Related: Engineering a Better WorldScientists and Engineers Without BordersKick Start Appropriate Technology

More Efficient Water Heaters

GE’s New Water Heater Could Kill 30 Coal Plants

until today, Energy Star didn’t regulate water heaters at all. They’re the most energy-hungry single appliance in the home, and are responsible for about 17% of residential energy use. But because of a lack of consensus on how they should be regulated, and resistance from industry, their efficiency went completely unregulated. Well, that all changed today.

The water heater first uses a heat pump to bring the water up to the temperature of the ambient air. Then the electric water heater takes over, bringing the water up to 140 degrees F.

This new design is more than 50% more efficient than previous water heaters. If every home in America had one right now, we would need 30 fewer coal-fired power plants! Every home that installs one will see their yearly power bills drop up to $250. Because the new device uses a heat exchanger, it will actually make your furnace work harder during the winter. But in the summer, and in warm climates, it will actually help cool your house!

The new water heater will be available in 2009. A great deal of savings are available from simple actions like using compact fluorescent light bulbs, better insulation and when buying new appliances buying energy efficient appliances. Tankless water heaters, for example, are available now: Bosch AquaStar Natural Gas Tankless Water Heater.

Related: Wind-Powered Water HeaterUnglamorous Electricity SavingsThe Magnetic FridgeEngineers Save Energyposts on decreasing our impact on the environment

False Teeth For Cats

False Teeth For Cats! What Next?

A team of eight British college students, calling themselves Fangs A Lot, have created the first false tooth for a cat and set up a business, Animal Solutions, to market false teeth for cats, dogs, and other animals. The group and its prototype false cat tooth have made it to the finals of the Ideas Igloo Roadshow, an invention contest for college students sponsored by Britain’s Make Your Mark Campaign and Microsoft, UK.

False teeth for cats may sound ridiculous, but they could be a solution to a serious problem for cats. Cats have notoriously bad dental problems. Cat owners seldom brush their cats’ teeth or scrape the surfaces of the teeth to remove plaque. By the time a cat is 3 or 4 years old, she may already have periodontal disease that can lead to tooth loss. Tooth loss may also come about as a result of tooth breakage, particularly in the canine teeth.

Link provided via our post suggestion page.

Related: Engineering Students Design Innovative Hand DryerUK Young Engineers CompetitionsLa Vida RobotEco-Vehicle Student CompetitionGenetically Engineered Machines Competition

‘Refrigerator’ Without Electricity

photo of pot in pot

2000 Rolex award to Mohammed Bah Abba of Nigeria for the Pot in Pot Cooling System:

Ingenious technique that requires no external energy supply to preserve fruit, vegetables and other perishables in hot, arid climates. The pot-in-pot cooling system, a kind of “desert refrigerator”, helps subsistence farmers by reducing food spoilage and waste and thus increasing their income and limiting the health hazards of decaying foods. Abba says he developed the pot-in-pot “to help the rural poor in a cost-effective, participatory and sustainable way”.

The pot-in-pot consists of two earthenware pots of different diameters, one placed inside the other. The space between the two pots is filled with wet sand that is kept constantly moist, thereby keeping both pots damp. Fruit, vegetables and other items such as soft drinks are put in the smaller inner pot, which is covered with a damp cloth. The phenomenon that occurs is based on a simple principle of physics: the water contained in the sand between the two pots evaporates towards the outer surface of the larger pot where the drier outside air is circulating. By virtue of the laws of thermodynamics, the evaporation process automatically causes a drop in temperature of several degrees, cooling the inner container, destroying harmful micro-organisms and preserving the perishable foods inside.

He also received the 2001 Shell Award for Sustainable Development. Great stuff:

Born in 1964 into a family of pot makers and raised in the rural north, Mohammed Bah Abba was familiar from an early age with the various practical and symbolic uses of traditional clay pots, and learned as a child the rudiments of pottery. Subsequently studying biology, chemistry and geology at school, he unravelled the technical puzzle that led him years later to develop the “pot-in-pot preservation/cooling system”.

Related: Appropriate Technology (Kick Start)appropriate technology tagged postsSmokeless Stove Uses 80% Less FuelWater and Electricity for AllThe Importance of Science EducationEngineering a Better World

Babbage Difference Engine In Lego

Building A Calculating Machine Using Lego Pieces by Andrew Carol

Before the day of computers and pocket calculators all mathematics was done by hand. Great effort was expended to compose trigonometric and logarithmic tables for navigation, scientific investigation, and engineering purposes. The larger efforts involved rooms of semi skilled people, called ‘computers’, capable of doing reliable arithmetic who would be under the direction of a skilled mathematician.

In the mid-19th century, people began to design machines to automate this error prone process. Many machines of various designs were eventually built but, the most advanced and famous of these was not. The Babbage Difference Engine.

Because of engineering issues as well as political and personal conflict the Babbage Difference engines construction had to wait until 1991 when the Science Museum in London decided to build the Babbage Difference Engine No.2 for an exhibit on the history of computers.

Babbage’s design could evaluate 7th order polynomials to 31 digits of accuracy. I set out to build a working Difference Engine using standard LEGO parts which could compute 2nd or 3rd order polynomials to 3 or 4 digits. I have built two generations of Difference Engines and am designing the third version now.

Related: Rubick’s Cube Solving Lego Mindstorms RobotLego Autopilot Project UpdateOpen Source for LEGO MindstormsDonald Knuth, Computer Scientist

Squid Materials Engineering

Scientists find that squid beak is both hard and soft

The sharp beak of the Humboldt squid is one of the hardest and stiffest organic materials known. Engineers, biologists, and marine scientists at the University of California, Santa Barbara, have joined forces to discover how the soft, gelatinous squid can operate its knife-like beak without tearing itself to pieces.

The key to the squid beak lies in the gradations of stiffness. The tip is extremely stiff, yet the base is 100 times more compliant, allowing it to blend with surrounding tissue. However, this only works when the base of the beak is wet. After it dries out, the base becomes similarly stiff as the already desiccated beak tip.

“You can imagine the problems you’d encounter if you attached a knife blade to a block of Jell-o and tried to use that blade for cutting. The blade would cut through the Jell-o at least as much as the targeted object. In the case of the squid beak, nature takes care of the problem by changing the beak composition progressively, rather than abruptly, so that its tip can pierce prey without harming the squid in the process. It’s a truly fascinating design!”

“If we could reproduce the property gradients that we find in squid beak, it would open new possibilities for joining materials,” explained Zok. “For example, if you graded an adhesive to make its properties match one material on one side and the other material on the other side, you could potentially form a much more robust bond,” he said. “This could really revolutionize the way engineers think about attaching materials together.”

Related: Deep-Sea Giant SquidSelf Healing PlasticSea Slug Photo Gallery

Jobs Increasing for German Engineers

Growth in jobs rises for German engineers

Employment in Germany’s engineering industry is expanding at its fastest rate in 40 years, highlighting the strength of Europe’s largest economy as global financial storms intensify.

Jobs in the sector – the backbone of Germany’s manufacturing industry – rose by 27,000 in January, the highest monthly increase since the 1960s, according to figures published on Tuesday by Gesamtmetall, the engineering employers’ federation. Some companies reported losing production because they could not fill vacancies quickly enough.

He said that about one in eight of the approximately 6,100 engineering companies were having difficulties in recruiting qualified engineers and mechanics, with this in some cases leading to production cutbacks. “Many companies misjudged how quickly the economy would recover and therefore failed to take on sufficient trainees,” Mr Vajna said. There also remained a shortage of engineering graduates, he added.

Related: Germany’s Science ChancellorTop 10 Manufacturing Countries 2006Best Research University Rankings (2007)Country H-index Rank for Science Publications