Category Archives: Engineering

Vaccine For Strep Infections

Engineered Protein Shows Potential as a Strep Vaccine

A University of California, San Diego-led research team has demonstrated that immunization with a stabilized version of a protein found on Streptococcus bacteria can provide protection against Strep infections, which afflict more than 600 million people each year and kill 400,000.

Group A Streptococcus (GAS). GAS causes a wide variety of human diseases including strep throat, rheumatic fever, and the life-threatening “flesh-eating” syndrome called necrotizing fasciitis. Studies were performed using M1 protein, which represents the version of M protein present on the most common disease-associated GAS strains.

“We created a modified version of M1 with a more stable structure, and found that it is just as effective at eliciting an immune reaction, but safer than the original version of M1, which has serious drawbacks to its use in a vaccine.”

Related: New and Old Ways to Make Flu VaccinesMRSA Vaccine Shows PromiseNew Approach Builds Better Proteins Inside a Computer

Honda Engineering

Inside Honda’s brain by Alex Taylor III

why is Honda playing with robots? Or, for that matter, airplanes? Honda is building a factory in North Carolina to manufacture the Hondajet, a sporty twin-engine runabout that carries six passengers. Or solar energy? Honda has established a subsidiary to make and market thin-film solar-power cells. Or soybeans? Honda grows soybeans in Ohio so that it can fill up cargo containers being shipped back to Japan. The list goes on. All this sounds irrelevant to a company that built some 24 million engines last year and stuffed them into everything from cars to weed whackers.

On fuel cells, Honda is literally years ahead of the competition. The FCX Clarity will go on sale in California this summer. It is powered by a fuel cell that uses no gasoline and emits only water vapor. Though mass production is at least a decade away, the Clarity is no mere test mule. Elegant and efficient, its hydrogen-powered fuel-cell stack is small enough to fit in the center tunnel – a significant improvement over other, bulkier power packs – and robust enough for a range of 270 miles.

The wellspring of Honda’s creative juices is Honda R&D, a wholly owned subsidiary of Honda Motor. Based in Saitama, west of Tokyo, R&D engineers create every product that Honda makes – from lawn mowers to motorcycles and automobiles – and pursue projects like Asimo and Hondajet on the side. Defiantly individualistic, R&D insists on devising its own solutions and shuns outside alliances. On paper it reports to Honda Motor, but it is powerful enough to have produced every CEO since the company was founded in 1948.

The engineer in Fukui [Honda’s president and CEO] cannot help but be intrigued by what his former colleagues are up to, and his office is only a few steps away from Kato’s. But even with the CEO just down the hall, says Kato, “We want to look down the road. We do not want to be influenced by the business.”

Honda allows its engineers wide latitude in interpreting its corporate mission. “We’ve been known to study the movement of cockroaches and bumblebees to better understand mobility,” says Frank Paluch, a vice president of automotive design. Honda R&D gets about 5% of Honda’s annual revenues. Most of the money goes to vehicle development, not cockroach studies

mistakes like the Insight are also the exception. R&D has provided Honda with a long list of engineering firsts that consumers liked, including the motorcycle airbag, the low-polluting four-stroke marine engine, and ultralow-emission cars.

Related: S&P 500 CEOs – More Engineering GraduatesGoogle Investing Huge Sums in Renewable Energy and is HiringAsimo Robot, Running and Climbing StairsApplied ResearchGoogle: Ten Golden Rules

2008 Draper Prize for Engineering

Draper Prize for Engineering Medal

2008 Charles Stark Draper Prize will be awarded to Rudolf Kalman for the development and dissemination of the optimal digital technique known as the Kalman Filter. The award recipient receives a $500,000 cash award. 2007 Draper Prize to Berners-Lee2006 Draper Prize for Engineering

The Kalman Filter uses a mathematical technique that removes “noise” from series of data. From incomplete information, it can optimally estimate and control the state of a changing, complex system over time. The Kalman filter revolutionized the field of control theory and has become pervasive in engineering systems. It has been applied to systems and devices in nearly all engineering fields and continues to find new uses today. Applications include target tracking by radar, global positioning systems, hydrological modeling, atmospheric observations, time-series analyses in econometrics, and automated drug delivery.

Administered by the National Academy of Engineering, the Draper Prize is endowed by The Charles Stark Draper Laboratory, Inc., and was established in 1988. The Prize is awarded for outstanding achievement, particularly innovation and reduction to practice, in engineering and technology contributing to the advancement of the welfare and freedom of humanity.

Related: 2006 Gordon Engineering Education Prize2006 MacArthur Fellows2005 and 2006 National Science and Technology MedalsShaw Laureates 2007

Phun Physics

Coolest science toy ever

Phun is without question the greatest computer toy in the history of the universe, if this had been around when I was a kid I would be a frickin genius by now. You don’t need things any more. It’s extremely easy to use. As a starter tip, turn gravity off when you’re attaching stuff to the background (right click after selecting “affix” tool).

Very cool. Get your Phun (2D physics software) for free. Phun is a Master of Science Theises by Computing Science student Emil Ernerfeldt.

Some other very cool stuff: Cool Mechanical Simulation SystemScratch from MITWhat Kids can LearnLego Autopilot First FlightAwesome Cat Cam

BlimpBot Foiled by Air Conditioning

TED BlimpBot Report: Foiled by Air Conditioning!

I had a three-minute slot to show how the prototype works. This was a pretty high-stake demo, since not only would there be 2,000 of the most influential people in the technology, entertainment and design (TED) worlds watching, but they included Al Gore in the FRONT ROW, Google’s Sergey Brin and Larry Page and movie stars such as John Cusack and Goldie Hawn.

The bot worked great in the hotel room, and then we took it the the auditorium during a break to test it on the main stage. Yikes. We were getting IR interference from everything, from LCD screens to the bright stage lights, and our reception range dropped to something around three feet. Even worse, the air currents were overcoming the blimp’s ability to fight them. So we gave up on the idea of a fixed IR beacon on the ground, and I decided to hold it in my hand to keep it near the blimp. Even then, the motors couldn’t fight the currents well enough.
So we rushed back to our staging area (my hotel room) and Jordi updated the firmware to give more power to the motors even at the cost of battery life (this demo only had to run three minutes) . We tested it again in the hotel room, it worked fine, and then it was time to go.

It turns out that one big thing had changed since our test run in the auditorium: 600 people had arrived. All that body heat had raised the temperature of the room, kicking in the air conditioning, which came out of huge ducts right over the stage. Basically I was under a raging waterfall of cold air, and the poor blimp sank right to the floor, its little vertical thruster completely overcome.

Related: Lego Autopilot Project UpdateAutonomous Flying VehiclesAlienFly RC Mosquito Helicopter

Better Higher Education Will Change Lives

Better higher education will change lives by Shashi Tharoor

When i left India for post-graduate studies in 1975, there were perhaps 600 million people in India, and we had five IITs (Indian Institutes of Technology). Today, we are nearly double that population, and we have seven IITs, one of which has essentially involved the relabelling of an existing Regional Engineering College. To keep up with demand – and the needs of the marketplace – shouldn’t we have had 20 IITs by now of the same standard as the original five? Or even 30?

India is entering the global employment marketplace with a self-imposed handicap of which we are just beginning to become conscious – an acute shortage of quality institutions of higher education. For far too long we have been complacent about the fact that we had produced, since the 1960s, the world’s second largest pool of trained scientists and engineers.

Whereas countries in the Middle East, and China itself, are going out of their way to woo foreign universities to set up campuses in their countries, India turns away the many academic suitors who have come calling in recent years. Harvard and Yale would both be willing to open branches in India to offer quality education to Indian students, but have been told to stay away. Those Indians who choose to study abroad easily get scholarships to do so – currently 80,000 of them are in the United States alone.

Related: Science and Engineering in Global EconomicsGlobal Research University Rankings (2007)The Role of Science in EconomyThe Importance of Science EducationEngineering graduate: USA, China, Indiaposts on engineering education

Home Engineering: Physical Gmail Notifier

photo of Gmail Cube

How to make a Physical Gmail Notifier

Every so often, the computer checks for new emails in your Gmail account, and then tells the electronics board whether any have arrived. If they have, the board turns on the output device (the cube). Simple.

The hardware itself is the popular Arduino board, the tinkerer’s dream device. I’m actually using a Boarduino, but any variant should work (subject to a small but important detail, see below). This might be particularly interesting with a Bluetooth Arduino..

The Arduino talks with your computer over a serial connection, which runs over the normal USB cable you use to communicate with your Arduino.

What is Arduino?: Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It’s intended for artists, designers, hobbyists, and anyone interested in creating interactive objects or environments. Arduino can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators.

Related: Awesome Cat CamWindmill for Electricity in MalawiLego UAVRubick’s Cube Solving Lego Mindstorms Robot

Entrepreneurial and Innovative Engineers

An interview with the Managing Director of Texas Instruments, India – How to mould great ‘intrapreneurs’

“We need an entrepreneurial spirit in every engineer and in every business person. In today’s competitive world, the dividing line between an entrepreneur and a professional is getting blurred. Whatever one is pursuing, one has to be entrepreneurial ‘and’ professional in his or her mindset,” Dr Mitra

We have a strong technical ladder running in parallel with the management ladder. The technical ladder at TI is not just unique in its concept and implementation, but it is also a powerful endorsement of the
organisation’s intent to reward and recognise outstanding technical leadership. The honour associated with being on the technical ladder is very high.

We also encourage small teams of engineers with an ‘intrapreneurial’ mindset to work on creative ideas and validate these with customers and our worldwide marketing teams. Some of these ideas could lead to potential breakthroughs for the future.

At TI, we also recognise that ‘collaborative innovation’ can have a powerful impact on our customers. This drives us to actively partner with several innovative companies, who develop applications on our platform. Over the last two decades, we have also built an extensive partner network of over 650 reputed Indian Universities – who are working closely with us on many innovative programs.

I joined TI in 1986, after graduating from IIT, Kharagpur with a B.Tech in Electronics and Electrical Communication Engineering. While working for TI, I received my Ph.D in Computer Science and Engineering from IIT, Kharagpur and also an Executive MBA degree from the University of Texas, Austin

Related: Marissa Mayer on Innovation at GoogleEngineer’s Future ProspectsThe Future is EngineeringEntrepreneurial Engineers

Global Wind Power Installed Capacity

The top five countries in terms of installed capacity are:

  • Germany (22.3 GW – gigawatts)
  • USA (16.8 GW)
  • Spain (15.1 GW)
  • India (8 GW)
  • China (6.1 GW)

Global capacity was increase by 27% in 2007. Record installations in US, China and Spain:

Wind energy has a considerable impact on avoiding greenhouse gases and combating climate change. The global capacity of 94 GW of wind capacity will save about 122 million tons of CO2 every year, which is equivalent to around 20 large coal fired power stations.

“We’re on track to meeting our target of saving 1.5 billion tons of CO2 per year by 2020”, said Steve Sawyer, “but we need a strong, global signal from governments that they are serious about moving away from fossil fuels and protecting the climate.”

Meeting energy needs using wind power is growing very rapidly, which is a great thing. It is still a small contributor to our overall energy needs but every bit helps.

Related: USA Wind power capacityCapture Wind Energy with a Tethered TurbineWind Power Technology Breakthrough

Collegiate Inventors Competition

A novel way to treat cancer has won the top honor at the 2007 Collegiate Inventors Competition, an annual program of the National Inventors Hall of Fame Foundation. Ian Cheong of Johns Hopkins University was announced as the grand prize winner, receiving a $25,000 prize, during a ceremony last night on the campus of the California Institute of Technology.

This year’s winners also include John Dolan of the University of California, San Francisco in the graduate category for his work on the Dolognawmeter, a device to measure the effectiveness of painkillers, and Corey Centen and Nilesh Patel of McMaster University in the undergraduate category for their work on creating a CPR assist device. The McMaster team and Dolan each received a $15,000 prize from the competition, which is sponsored by the United States Patent and Trademark Office (USPTO) and the Abbott Fund.

The Collegiate Inventors Competition has recognized and encouraged undergraduate and graduate students on their quest to change the world around them for 17 years. Entries for 2008 are due by 16 May 2008 and must be the original idea and work product of the student/advisor team, and must not have been (1) made available to the public as a commercial product or process or (2) patented or published more than 1 year prior to the date of submission to the competition. The entry submitted must be written in English.

The invention, a reduced-to-practice idea or workable model, must be the work of a student or team of students with his or her university advisor. If it is a machine, it must be operable. If it is a chemical, it must be complete with evidence of successful application of the idea. If it is a new plant, color photographs or slides must be included in the submission. If a new or original ornamental design for an article of manufacture is submitted, the entire design must be included in the application. In addition, the invention should be reproducible.

Related: Inventor TV ShowsEngineering a Better Blood Alcohol SensorModern Marvels Invent Now ChallengeSchoofs Prize for Creativity

Ian Cheong, 33, arrived at Johns Hopkins University from his native Singapore prepared to focus on cancer therapy. Drugs used in cancer treatment routinely kill the healthy cells as well as the cancer cells because they are potent but nonspecific. Cheong took on the task of finding a way to make the cancer drugs more specific. He injected bacterial spores into the subject which made their way to oxygen-poor areas within cancerous tumors. Then, Cheong put a cancerfighting drug in lipid particles and injected those liposomes into a subject. The germinated bacterial spores also secrete a protein that makes liposomes fall apart when the drug-containing liposomes are in the proximity of the tumors, and the drug is released only in those specific areas. Cheong, originally educated as a lawyer, received his Ph.D. in cell and molecular medicine from Johns Hopkins and is currently working on postdoctoral research. His advisor, Bert Vogelstein, receives a $15,000 prize.

The idea for this post was submitted through our post suggestion page.