Category Archives: Engineering

Silicon Valley Shows Power of Global Science and Technology Workforce

Even with the challenges created by the culture in Washington DC against non-European foreigners the last 15 years Silicon Valley continues to prosper due to the talents of a pool of global science and engineering talent. Other countries continue to fumble the opportunity provided by the USA’s policies (largely a combination of security theater thinking and a lack of scientific literacy); and the strength of Silicon Valley’s ecosystem has proven resilient.

Software Is Reorganizing the World

an incredible 64% of the Valley’s scientists and engineers hail from outside the U.S., with 43.9% of its technology companies founded by emigrants.

5 things to know about the Silicon Valley economy

64 percent of college-educated professionals working in Silicon Valley science and engineering positions were born outside the U.S. as of 2011. That’s compared to the national average of 26 percent.

The Kauffman foundation’s recent study America’s New Immigrant Entrepreneurs: Then and Now shows evidence the anti-global culture in Washington DC is negatively impacting the economy in the USA.

The drop is even more pronounced in Silicon Valley, where the percentage of immigrant-founded startups declined from 52.4 percent to 43.9 percent.

The Immigrant Exodus: Why America Is Losing the Global Race to Capture Entrepreneurial Talent, draws on the research to show that the United States is in the midst of a historically unprecedented halt in high-growth, immigrant-founded startups.

… launched a website — ImmigrantExodus.com — as a resource for journalists and a voice for immigrant entrepreneurs.

As I have written for years, I expected the USA’s relative position to decline. The huge advantages we had were not sustainable. But the very bad policies of the last 15 years have negatively impacted the USA. The only thing not making the results much worse is no strong competitors have stepped into the void created by the policies of the last 2 USA administrations. It isn’t easy to create a strong alternative for technology startups but the economic value of doing so is huge.

The USA has created the opportunity for others to grow much faster, now some just have to step into the void. Will Brazil, Norway, Korea, Chile, Malaysia, Finland, New Zealand, Singapore, Germany, India… step up and create conditions for entrepreneurial scientists and engineers? Each country has been doing some good things but also continue to miss many opportunities. Some countries also have more challenges to overcome – it is much easier if the economy is already rich (say in top 20 in the world), speaks English, has a strong science and technology workforce… The innovation stiffing legal system in place in the USA is absolutely horrible and presents a huge opportunity to anyone willing to stand up to the USA’s continuing pressure to force countries to burden themselves with equally bad (or even worse) policies (such as the Trans-Pacific Partnership). It is possible to succeed with numerous weaknesses it just requires even more offsetting benefits to attract technology entrepreneurs.

Some things are probably absolutely required: rule of law, strong technology infrastructure (internet, etc.), good transportation links internationally, stable politically, freedom of expression (technology entrepreneurs expect to be able to try and say crazy things if you want to control what people say and publish that is very counter to the technology entrepreneurial spirit – especially around internet technology)…

Related: The Future is EngineeringUSA Losing Scientists and Engineers Educated in the USAScience and Engineering in Politics

Earnings by College Major – Engineers and Scientists at the Top

graph of earnings by college-major

Median annual income by major based on data from the Georgetown Center On Education And The Workforce – via blog post: The Most And Least Lucrative College Majors.

As we have posted about for years engineers do very well financially. This chart shows the median income by college major (the data includes those who went on to get advanced degrees) based on data for the USA. See the data on those that only have bachelors degrees. Also see a detailed post from the Curious Cat Economics blog looking at the value of college degrees based on the Georgetown data.

Engineering holds 6 of the top spots in the graph shown above and 8 of the top spots for those that didn’t earn an advanced degree. Pharmacy-sciences-and-administration and Math-and-computer-sciences made the top 10 of both lists. Pharmacology and health-and-medical-prepatory-programs make the list when advanced degrees are included.

The highest earning major, petroleum engineering, with $120,000 doesn’t have an increase for those with advanced degrees. The 10th spot goes to electrical engineering with a $94,000 median income.

Related: No Surprise – Engineering Graduates Continue to Reign SupremeEngineering Again Dominates The Highest Paying College Degree ProgramsEngineering Majors Hold 8 of Top 10 Highest Paid MajorsThe Labor Market for Software Developers

Appropriate Technology Brings a $1.30/month Cell Phone Plan to Remote Village

I love this kind of stuff: smart use of engineering provides cell phone service to remote Mexican village, with 9,000 residents, for $1.30/month (1/13 of the price charge by traditional cell phone service in Mexico City).

The town that Carlos Slim forgot

It’s so remote that there was no cell service. In stepped Rhizomatica, a nonprofit with the goal of increasing “access to mobile telecommunications to the over two billion people without affordable coverage and the 700 million with none at all.”

The U.S. and European experts working with Mexican engineers got the network set up by March of this year. At first, they ruled that phone calls were not to be longer than five minutes each to keep the small network from getting saturated.

By May, local numbers in Mexico City, Los Angeles and Seattle were set up, meaning that Oaxacans in Villa Talea could call relatives in the capital or in California as if it were practically a local call, a few cents a minute.

Given the success they are buying equipment that can handle the volume and will donate the existing equipment to setup a new village (a smaller one, I imagine). This was the first village they setup.

Long-distance is go

After almost two months of fine-tuning, long-distance service is finally ready to launch. This means folks in the town will be able to call out of the coverage area (only around 5-10km) to any phone, anywhere. Likewise we purchased a few DID numbers which allow people to call a Mexico City, Los Angeles or Seattle number and connect right to the village.

This is one of so many great efforts to use appropriate technology to improve people’s lives. It is easy for me to get frustrated at the cash for votes mentality of the USA politicians which creates policies against improvement for society and for protection of obsolete business models (until the bought-and-paid-for politicians make the business models sustainable by legislating against better options). It is great to see these kind of examples for the good work being done outside of the political sphere.

Related: Pay as You Go Solar in IndiaProviding Computer to Remote Students in NepalReducing Poverty Using EntrepreneurshipMonopolies and Oligopolies do not a Free Market Make

Hyperloop – Fast Transportation Using a Better Engineering Solution Than We Do Now

Elon Musk (the engineer and entrepreneur behind Tesla electric cars and before that he helped create PayPal) has a very cool idea of how to provide fast long distance transportation (faster than a plane). Essentially it is a big version of pneumatic tubes that used to be used to send small packages around a building, as seen in the movie – Brazil 🙂 Details are scheduled to be released August 12th.

This Is How Elon Musk Can Build the Hyperloop for a Tenth the Cost of High-Speed Rail

Having a elevated Hyperloop main line also completely avoids or reduces many of the pitfalls of ground-level right-of-ways, and opens up some new opportunities as well:

  • The crossing of other right-of-ways, like roads and railways, will be a breeze.
  • Rivers and other terrain obstacles will only be a 10th the problem of rail construction.
  • Hyperloop can avoid tunnels completely by having more flexible choices of right-of-way.
  • An elevated right-of-way opens up new route options, like leasing farmer’s fields using contracts similar to what wind-power companies sign.
  • That could be paid for by leasing Hyperloop’s right-of-way to communications companies for fiber optic cables, cell phone towers, etc.
  • …and let’s not forget the solar power that a couple of square miles of surface area can generate!

Hype Builds Before Elon Musk’s August Alpha Plan for Hyperloop

The Hyperloop would transport passengers from San Francisco to Los Angeles in about 30 minutes and at about twice the average speed of a commercial jet. The system would be on-demand, cheaper than current alternatives, impossible to crash, and potentially, run entirely on solar power.

Travelers ride in pods magnetically accelerated and decelerated into the main tube (like a rail gun) where the air circulates at speed. The air between pods acts as a cushion, preventing crashes, while more air injected through perforations in the tube levitates the pods and reduces friction, much as it might on an air hockey table.

Elon Musk has some very good ideas but what really sets him apart is turning them into functioning enterprises. Great ideas are wonderful but a huge number never go anywhere. Those people that can actually get ideas into the marketplace are the people that provide a much greater standard of living for all of us. And many of them are engineers.

Update: link to his blog post announcement.

More examples of cool extreme engineering: Monitor-Merrimac Memorial Bridge-TunnelTransferring Train Passengers Without Stoppingtransatlantic tunnelWebcast on Machine That Bores Subway Tunnels

3d Printers Can Already Save Consumers Money

I first wrote about 3d printing at home here, on the Curious Cat Engineering blog, in 2007. Revolutionary technology normally takes quite a while to actually gain mainstream viability. I am impressed how quickly 3d printing has moved and am getting more convinced we are underestimating the impact. The quality of the printing is improving amazingly quickly.

3d printed objects

As is so often the case these day, our broken patent system is delaying innovation in our society. For 3d printing there is a good argument the delays due to the innovation crippling way that system is operating today will be avoided as critical 3d patents expire in 2014. Patents can aid society but the current system is not, instead it is causing society great harm and delaying us being able to use new innovations.

“For the average American consumer, 3D printing is ready for showtime,” said Associate Professor Joshua Pearce, Michigan Technological University.

3D printers deposit multiple layers of plastic or other materials to make almost anything, from toys to tools to kitchen gadgets. Free designs that direct the printers are available by the tens of thousands on websites like Thingiverse (a wonderful site). Visitors can download designs to make their own products using open-source 3D printers, like the RepRap, which you build yourself from printed parts, or those that come in a box ready to print, from companies like Type-A Machines.

3D printers have been the purview of a relative few aficionados, but that is changing fast, Pearce said. The reason is financial: the typical family can already save a great deal of money by making things with a 3D printer instead of buying them off the shelf.

In the study, Pearce and his team chose 20 common household items listed on Thingiverse. Then they used Google Shopping to determine the maximum and minimum cost of buying those 20 items online, shipping charges not included.

Next, they calculated the cost of making them with 3D printers. The conclusion: it would cost the typical consumer from $312 to $1,944 to buy those 20 things compared to $18 to make them in a weekend.

Open-source 3D printers for home use have price tags ranging from about $350 to $2,000. Making the very conservative assumption a family would only make 20 items a year, Pearce’s group calculated that the printers would pay for themselves quickly, in a few months to a few years.

The group chose relatively inexpensive items for their study: cellphone accessories, a garlic press, a showerhead, a spoon holder, and the like. 3D printers can save consumers even more money on high-end items like customized orthotics and photographic equipment.

Continue reading

Home Engineering: Automatic Screen Door Closer

A simple solution to a common problem. Using a small pulley, some nylon string and a bottle of sand to create an automatic sliding patio door. It is wonderful to see how creative people can find solutions to improve our lifestyles. Don’t just accept limitation, find ways to make things better.

Related: Home Engineering, Halloween Edition: Gaping Hole CostumeHome Engineering: Bird Feeder That Automatically Takes Photos When Birds FeedLow-Cost Multi-touch Whiteboard Using Wii Remote

Research on Ancient Roman Concrete Will Allow the Creation of More Durable and Environmentally Friendly Concrete

Analysis of samples of ancient Roman concrete pinpointed why the best Roman concrete was superior to most modern concrete in durability, why its manufacture was less environmentally damaging – and how these improvements could be adopted in the modern world.

“It’s not that modern concrete isn’t good – it’s so good we use 19 billion tons of it a year,” says Paulo Monteiro (U.S. Department of Energy’s Lawrence Berkeley National Laboratory). “The problem is that manufacturing Portland cement accounts for seven percent of the carbon dioxide that industry puts into the air.”

Portland cement is the source of the “glue” that holds most modern concrete together. But making it releases carbon from burning fuel, needed to heat a mix of limestone and clays to 1,450 degrees Celsius (2,642 degrees Fahrenheit) – and from the heated limestone (calcium carbonate) itself. Monteiro’s team found that the Romans, by contrast, used much less lime and made it from limestone baked at 900Ëš C, or lower, requiring far less fuel than Portland cement.

Cutting greenhouse gas emissions is one powerful incentive for finding a better way to provide the concrete the world needs; another is the need for stronger, longer-lasting buildings, bridges, and other structures. Roman harbor installations have survived 2,000 years of chemical attack and wave action underwater. We now expect our construction to last 50 to 100 years.

The Romans made concrete by mixing lime and volcanic rock. For underwater structures, lime and volcanic ash were mixed to form mortar, and this mortar and volcanic tuff were packed into wooden forms. The seawater instantly triggered a hot chemical reaction. The lime was hydrated – incorporating water molecules into its structure – and reacted with the ash to cement the whole mixture together.

Continue reading

Loon – Balloon Enabled Internet

Project Loon, from Google:

The Internet is one of the most transformative technologies of our lifetimes. But for 2 out of every 3 people on earth, a fast, affordable Internet connection is still out of reach.

We believe that it might actually be possible to build a ring of balloons, flying around the globe on the stratospheric winds, that provides Internet access to the earth below. It’s very early days, but we’ve built a system that uses balloons, carried by the wind at altitudes twice as high as commercial planes, to beam Internet access to the ground at speeds similar to today’s 3G networks or faster. As a result, we hope balloons could become an option for connecting rural, remote, and underserved areas, and for helping with communications after natural disasters.

Google testing out this system now in New Zealand. If they can get it to work they plan to use ballons to provide wireless internet access to hundreds of millions, or even billions, of people that don’t have access now. These ballons would float about 20 km above earth in the stratosphere (so well above where commercial airline traffic) and they are really working somewhat like to satellites.

Though ballons are much cheaper to put in place than satellites they also offer significant problems as they get blow around by wind (which is why they haven’t been used before and why Google is going to experiment to see if they can get it to work). The ballons will use solar power and be controlled by a mission control to move into different wind zones to position themselves.


Continue reading

Introduction to Fractional Factorial Designed Experiments

Scientific inquiry is aided by sensible application of statistical tools. I grew up around the best minds in applied statistics. My father was an eminent applied statistican, and George Box (the person in the video) was often around our house (or we were at his). Together they wrote Statistics for Experimenters (along with Stu Hunter, not related to me) the bible for design of experiments (George holds up the 1st edition in the video).

The video may be a bit confusing without at least a basic idea of factorial designed experiments. These introductory videos, by Stu Hunter, on Using Design of Experiments to Improve Results may help get you up to speed.

This video looks at using fractional factorials to reduce the number of experiments needed when doing a multifactor experiment. I grew up understanding that the best way to experiment is by varying multiple factors at the same time. You learn much quicker than One Factor At a Time (OFAT), and you learn about interactions (which are mainly lost in OFAT). I am amazed to still hear scientists and engineers talk about OFAT as a sensible method or even as the required method, but I know many do think that way.

To capture the interactions a full factorial requires an ever larger number of experimental runs to be complete. Assessing 4 factors requires 16 runs, 6 would require 64 and 8 would require 256. This can be expensive and time consuming. Obviously one method is to reduce the number of factors to experiment with. That is done (by having those knowledgable about the process include only those factors worth the effort), but if you still have, for example, 8 very important factors using a fractional factorial design can be very helpful.

And as George Box says “What you will often find is that there will be redundant factors… and don’t forget about those redundant factors. Knowing that something doesn’t matter is almost as important as knowing what does.” If you learn a factor isn’t having an affect you may be able to save money. And you can eliminate varying that factor in future experiments.

Continue reading

Rubber Trees

I think rubber trees are pretty cool, dripping out nice latex is just neat.

photo of rubber trees

Photo of rubber trees in Khao Lak, Thailand

Latex is collected from trees which is then treated to make rubber. Hevea brasiliensis (originally found the Amazon basin in Brazil), the Pará rubber tree, sharinga tree, or, most commonly, the rubber tree, is a tree belonging to the family Euphorbiaceae. Gutta-percha (Palaquium) is a genus of tropical trees native to Southeast Asia. The milky latex extracted from the trees is the primary source of natural rubber. Now refining petroleum is an alternative way for creating products that required rubber previously, but rubber is still economically important.

In 1876, Henry Wickham gathered thousands of para rubber tree seeds from Brazil, and these were germinated in Kew Gardens, England. The seedlings were then sent to India, Ceylon (Sri Lanka), Indonesia, Singapore and British Malaya (now Malaysia). Malaya was later to become the biggest producer of rubber. In the early 1900s, the Congo, Liberia and Nigeria also became significant producers of natural rubber latex.

photo of a rubber tree seed

Rubber tree seed from near Fraser’s Hill, Malaysia, by John Hunter.

Continue reading