Category Archives: Funding

$400 Million More for Harvard and MIT

$400 million endowment for the Broad Institute of Harvard and MIT

“Today the Broad Institute is the world’s leading genomics and biomedical institute, and we’re now making a $600 million bet that the Broad will be the place where the greatest scientific discoveries take place,” Eli Broad said at today’s ceremony.

In its short history, the Broad Institute’s accomplishments include cataloging and identifying genetic risk factors for diseases such as type 2 diabetes and autism; discovering new therapeutic targets for cancer, malaria, and other diseases; and applying genomic tools to better understand and treat human pathogens like tuberculosis.

The Broads’ gift is the largest to support biomedical research at a university anywhere in the world. The Broads initially invested $100 million in 2003 as a way to test the institute’s new approach to biomedical research. By 2005, the Broad Institute had already made significant accomplishments and progress, and the Broads invested a second $100 million. Their endowment of $400 million today will allow the Broad Institute to transition to a permanent, non-profit 501(c)(3) organization with both Harvard and MIT still at the heart of it, continuing to help govern the institute.

Many countries would love to create a world class center of biomedical research. And several are trying. Boston sure seems to be staking a claim that it will be one of those centers of excellence. The economic benefits of that to Boston will be huge.

Related: Harvard Plans Life Sciences Campus$1 Billion for Life Sciences in MassachusettsChina’s Gene Therapy Investment$600 Million for Basic Biomedical Research from HHMIEdinburgh University $115 Million Stem Cell Center

Symptom of America’s Decline in Particle Physics

Land Of Big Science

Probing more deeply than ever before into the stuff of the universe requires some big hardware. It also requires the political will to lavish money on a project that has no predictable practical return, other than prestige and leadership in the branch of science that delivered just about every major technology of the past hundred years.

Those advances came, in large measure, from the United States. The coming decades may be different.

A third of the scientists working at the LHC hail from outside the 20 states that control CERN. America has contributed 1,000 or so researchers, the largest single contingent from any non-CERN nation.

The U.S. contribution amounts to $500 million—barely 5 percent of the bill. The big bucks have come from the Europeans. Germany is picking up 20 percent of the tab, the British are contributing 17 percent, and the French are giving 14 percent.

The most worrying prospect is that scientists from other countries, who used to flock to the United States to be where the action is, are now heading to Europe instead.

This is a point I have made before. The economic benefits of investing in science are real. The economic benefits of having science and engineering centers of excellence in your country are real. That doesn’t mean you automatically gain economic benefit but it is a huge advantage and opportunity if you act intelligently to make it pay off.

Related: Invest in Science for a Strong EconomyDiplomacy and Science ResearchAsia: Rising Stars of Science and EngineeringBrain Drain Benefits to the USA Less Than They Could Beposts on funding science explorationposts on basic researchAt the Heart of All Matter

MIT International Science and Technology Initiatives

MIT International Science and Technology Initiatives

MIT is providing seed funding to faculty to encourage global research. The seed funds cover a variety of expenses, including exploratory field research, workshop materials and instrument costs. Each proposal is eligible for up to $20,000 in funding. Research and collaboration can take place anywhere in the world on any topic. For all projects, up to $10,000 in additional funding is available for undergraduate and graduate student participation.

MISTI country programs also offer five country-specific seed funds for collaborative research involving France, India, Italy, Japan or Spain.

This is a good use of their huge endowment. So is the Open Courseware initiative. As is their elimination of tuition for those with families earning less than $75,000. Good for MIT.

Related: Global Engineering Education StudyMIT Faculty Study Recommends Significant Undergraduate Education ChangesFunding Medical Research

Google.org Invests $10 million in Geothermal Energy

Google is investing huge sums in renewable energy with the aim of cheaper than coal renewable energy. Google.org (the philanthropic arm of Google) announced $10.25 million in investments in a breakthrough energy technology called Enhanced Geothermal Systems (EGS).

EGS expands the potential of geothermal energy by orders of magnitude. The traditional geothermal approach relies on finding naturally occurring pockets of steam and hot water. The EGS process, by comparison, replicates these conditions by fracturing hot rock, circulating water through the system, and using the resulting steam to produce electricity in a conventional turbine.

A recent MIT report on EGS estimates that just 2% of the heat below the continental United States between 3 and 10 kilometers, depths within the range of current drilling technology, is more than 2,500 times the country’s total annual energy use.

“EGS could be the ‘killer app’ of the energy world. It has the potential to deliver vast quantities of power 24/7 and be captured nearly anywhere on the planet. And it would be a perfect complement to intermittent sources like solar and wind,” said Dan Reicher, Director of Climate and Energy Initiatives for Google.org.

Google’s Renewable Energy Cheaper than Coal initiative focuses on solar thermal power, advanced wind, EGS and other potential breakthrough technologies. Google has set a goal to produce one gigawatt of renewable energy capacity, enough to power a city the size of San Francisco, in years, not decades.
Continue reading

The PI lacks the experience with the proposed methodology…

A nice post from ScienceWoman: The PI lacks the experience with the proposed methodology…

Well, no kidding. I’m 3000 miles from my old stomping grounds. I’m trying to start an independent research program in a place where the geology/climate are not at all the same. I’m applying for $ for that are specific to Mystery State. Damn straight I’m going to need to learn a few new techniques. (And we’re not talking rocket science here.) But was there nothing in the proposal to suggest that I didn’t understand the techniques or wasn’t properly applying them. Just a lack of a publication record that explicitly used those techniques or occurred in this part of the country.

I suspect that this is a criticism that I’m going to see a few more times before tenure. And I suspect that it’s a criticism that’s not uniquely being leveled at me.

In this case, this criticism isn’t the reason the proposal wasn’t funded. But it’s the one reviewer critique that I can’t surmount on the resubmission. It’s like that itch I can’t scratch. So I guess the resubmitted proposal is just going to have to be so kick-ass in all other respects that there’s no way they can deny me these funds. Better get to work.

Related: Funding for Science and Engineering ResearchersHMMI Nurtures Nation’s Best Early Career Scientists$1 Million Each for 20 Science Educatorsposts on funding in scienceAdvice on Successfully Applying for Science and Engineering Scholarships and Fellowships

$100 Million for Ohio University Engineering Education

Ohio University gets record setting gift

This gift brings the Russes’ total giving to at least $100.7 million. Prior to this gift, the couple had contributed more than $8.9 million to Ohio University, the majority of which is held in endowments that support engineering.

The Russes’ generosity has made them the largest donors in the university’s history. Another engineering family — C. Paul and Beth K. Stocker — are next on the list with contributions totaling $31.9 million. The proceeds will support engineering education and research at Ohio University.

The Russes believe in putting support where it would have significant impact. In addition to supporting Russ College students, faculty and facilities, they established the Russ Prize to recognize how engineering improves the human condition. One of the top three engineering prizes in the world, the Russ Prize is awarded bi-annually in conjunction with the National Academy of Engineering.

The planning will take cues from the college’s strategic research areas: avionics; biomedical engineering, energy and the environment; and smart civil infrastructure. Planners expect that, in addition to supporting research, funds from the estate will support scholarships and leadership incentives for engineering students.

Related: Innovative Science and Engineering Higher EducationS&P 500 CEOs, Again Engineering Graduates Leadposts on engineering education$25 Million for Marquette College of EngineeringHarvard Elevates Engineering Profile$20 Million for Georgia Tech School of Industrial and Systems Engineering

$1 Billion for Life Sciences in Massachusetts

Petri dish for economic growth

So far, the signs are good. The bill commits $500 million for research facilities, infrastructure improvements, and other capital projects; $250 million for tax credits; and $250 million for research grants. The plan is flexible enough to support research at private institutions while making major investments at public universities. Patrick and legislators fended off the most flagrant attempts to divert money into political pet projects with little direct relevance to the biotech industry, such as $49.5 million for a science building at a state college with no graduate science programs.

As I have mentioned many times the centers of scientific excellence are important for economic success. Massachusetts has some great advantages with MIT, Harvard, many biotech companies… but still must continue to focus on staying a center of excellence.

Related: Harvard Plans Life Sciences CampusChina’s Gene Therapy Investment$600 Million for Basic Biomedical ResearchSingapore woos top scientists with new labsEconomic Strength Through Technology Leadership

Big Drug Research and Development on Campus

Big Drug R&D on Campus

Merck and Harvard just signed an agreement to develop treatments for the bone disease osteoporosis. On Apr. 25 rival Pfizer (PFE) invested $14 million in an alliance with four universities to study diabetes and obesity.

Drugmakers are counting on these deals to solve a persistent problem: underperforming product pipelines. Merck, Pfizer, and others have been losing sales of one blockbuster drug after another as patents expire and competitors charge in with generics. Big drug companies have fought back by spending more on research, yet the number of new medicines approved each year is falling. In the last week of April alone, the U.S. Food & Drug Administration rejected two of Merck’s experimental drugs, prompting the company to lay off 1,200 salespeople.

Past deals between industry and academia have been hampered by patent disputes and tussles over publication rights, as companies tried to thwart academics who want to share their discoveries with colleagues around the world. So now the companies have devised policies allowing their Ivory Tower partners to patent and publish their discoveries, even as they draw the professors more deeply into corporate affairs.

Funding university activities this way can lead to conflicts and problems but realistically huge amounts of funding are entangled with possible conflicts of interest. The biggest concern I is that universities will bow to the almighty dollar instead of their missions. And inadequate oversight can damage their credibility (not one failure, most likely, but if a pattern emerges). For example: Researchers Fail to Reveal Full Drug Pay (“The Harvard group’s consulting arrangements with drug makers were already controversial because of the researchers’ advocacy of unapproved uses of psychiatric medicines in children.”). Then find out the companies were paying them well, the professors failed to disclose that and the advocacy is rightfully questioned.

Related: From Ghost Writing to Ghost Management in Medical JournalsFunding Medical ResearchMedical Study Integrity (or Lack Thereof)Marketing Drugs

Robotic Prosthetic Arms for People

Dean Kamen latest invention was funded by DARPA. Once again he is doing amazing stuff. It is great what engineers can do (many worked together to get the progress so far) when given the opportunity. We need many more such efforts.

Dean Kamen Lends a Hand, or Two (August 2007):

DARPA has spent almost $25 million funding two independent teams, Mr. Kamen’s DEKA Research & Development Corp. and a group at Johns Hopkins’ University in an effort they hope will ultimately lead to commercial prosthesis that can be controlled from the human brain.

The innovation in the DEKA arm lies in its ultra light weight carbon shell, giving the user an exoskeleton with which to gain the leverage necessary to do some of the extraordinary things the system makes possible, such as lifting a 40 lb. weight.

To make the system function, the DEKA engineers coated the inside of the shell with a mosaic of thin air bladders that can be individually filled with air to offer padding and rigidity necessary to make possible normally ordinary tasks such as operating a portable power drill. When the arm is not in use the system deflates, or can even alternately fill and empty to offer a massage effect, so that it is not painful to wear for long periods.

The DEKA system is controlled by a joystick that is moved by the remaining portion of the user’s arm and by a second control mechanism in the user’s shoe. Mr. Kamen said that despite the complexity of controlling an ensemble of motors and mechanical servo devices, a user can gain basic functional control in just one day.

Related: Water and Electricity for AllR&D Magazine’s 2006 Innovator of the YearThe Engineer That Made Your Cat a PhotographerDesign for the Unwealthiest 90 PercentOpen Source 3-D Printing

Saving Fermilab

Fermilab was once the premiere particle physics research lab. It is still a very important research lab. But, I have said before, other countries are the ones making the larger efforts lately to invest in science and technology centers of excellence that the US was making in the 1960’s and 1970’s: Economic Strength Through Technology Leadership, Investing in Technology Excellence, etc..

I have also said that the past success of the US has left it in a still very strong position. For example, the anonymous donor that saved Fermilab with a $5 million donation likely benefited from the successful investments in science centers of excellence in the past (few countries – maybe 30, can rely on large donations from wealthy individuals, to sustain centers of excellence and I don’t think any approach what the USA has now – Howard Hughes Medical Institute, Standford, MIT…).

Excellent post on the the saving of Fermilab, To the person who saved Fermilab: Thank You.:

The facility has recently seen financial difficulties which have resulted in the layoffs of research staff and dramatic cuts in experiments. The world class research facility has been left to scrape together funds to pay the bills and has even had to auction off equipment and ask staff members to take pay cuts just to keep the lights on in the laboratories.

Fermilab also has an illustrious history of achievements in the field of supercomputer development and parallel processing. Fermilab has been on the forefront of applying supercomputing to physics research and is one of the top supercomputing centers of the world. Fermilab has claimed the world’s most powerful supercomputer on multiple occasions – although the title is rarely held long by any system due to the continuous advancements in computing. In recent years, Fermilab has been a leader in the development of “lattice” supercomputing systems and has developed methods for efficiently utilizing the power of multiple supercomputers in different locations through more [efficient] distribution practices.

To some, the construction of the Large Hadron Collider at CERN may seem to reduce the importance of Fermilab’s capabilities, but this is not at all the case. Although the LHC may take the title for the overall size and energy levels of a particle accelerator, Fermilab remains a uniquely capable particle physics research institution. Though less powerful, the Tevatron is able to operate for longer periods of time than the LHC and will likely require less downtime for maintenance, allowing for greater access and numerous types of research activities.

Related: CERN Pressure Test Failureposts on funding science researchMatter to Anti-Matter 3 Trillion Times a SecondGoogle Investing Huge Sums in Renewable EnergyGates Foundation and Rotary Pledge $200 Million to Fight PolioWashington WasteWashington Paying Out Money it Doesn’t HaveProposal to Triple NSF GFRP Awards and the Size of the Awards by 33%