Category Archives: Health Care

Vaccines Can’t Provide Miraculous Results if We Don’t Take Them

Vaccine preventable diseases used to ravage our health. In the USA, we are lucky to live in a society where those before us have taken vaccines and reduced to very low levels the attack vectors for these diseases. If nearly everyone is vaccinated for polio, even if it crops up with one person, most likely it won’t spread. As more people chose to risk the health of others in the society by failing to vaccinate, an infection can spread rapidly. There are some people who can’t be vaccinated for one reason or another (normally dangerous allergies) and vaccines, while very effective are not 100% effective. So any person that fails to vaccinate their kids endangers society and those who cannot be vaccinated.

Six Top Vaccine Myths

Myth 1: It’s not necessary to vaccinate kids against diseases that have been largely eradicated in the United States.
Reality: Although some diseases like polio and diphtheria aren’t often seen in America (in large part because of the success of the vaccination efforts), they can be quite common in other parts of the world. The Centers for Disease Control and Prevention warns that travelers can unknowingly bring these diseases into the United States, and if we were not protected by vaccinations, these diseases could quickly spread throughout the population. At the same time, the relatively few cases currently in the U.S. could very quickly become tens or hundreds of thousands of cases without the protection we get from vaccines. Brown warns that these diseases haven’t disappeared, “they are merely smoldering under the surface.”

Most parents do follow government recommendations: U.S. national immunization rates are high, ranging from 85 percent to 93 percent, depending on the vaccine, according to the CDC.

See the 2010 Child & Adolescent Immunization Schedules from the CDC and protect your children and society. The suffering caused by preventable diseases like polio and small pox was huge. We should not delude ourselves into thinking that those diseases are not dangerous. They are. We have been protected by all those taking vaccines. If people in the society don’t take vaccines that increases the health risks to the society at large.

Routine smallpox vaccination among the American public stopped in 1972 after the disease was eradicated in the United States. The United States government has enough vaccine to vaccinate every person in the United States in the event of a smallpox emergency (mainly due to concerns about bio-terrorism).

U.S. Adults Dying of Preventable Diseases

Diseases easily preventable by adult vaccines kill more Americans each year than car wrecks, breast cancer, or AIDS.

“We have a chronic disease epidemic in the U.S. It is taxing our families and taxing our economy,” the CDC’s Anne Schuchat, MD, said at the news conference. “We have a need for culture change in America. We worry about things when they are really bad rather than focusing on prevention, which can keep us out of the hospital and keep our families thriving.”

In other parts of the world the danger is not from those who chose not to vaccinate their children but those who are not provided the opportunity to.

Bill Gates’ war on disease, poverty is an uphill battle
Continue reading

Parasites in the Gut Help Develop a Healthy Immune System

It has long been known that microbes in the gut help to develop a healthy immune system, hence the rise in popularity of probiotic yoghurts that encourage ‘friendly’ bacteria. But new research by Professors Richard Grencis and Ian Roberts shows that larger organisms such as parasitic worms are also essential in maintaining our bodily ‘ecosystem’. “The worms have been with us throughout our evolution and their presence, along with bacteria, in the ecosystem of the gut is important in the development of a functional immune system.”

Parasite Rex is a great book, I have written about previously looking at parasites and their affect on human health.

Professor Grencis adds: “If you look at the incidence of parasitic worm infection and compare it to the incidence of auto-immune disease and allergy, where the body’s immune system over-reacts and causes damage, they have little overlap. Clean places in the West, where parasites are eradicated, see problems caused by overactive immune systems. In the developing world, there is more parasitic worm infection but less auto-immune and allergic problems.

“We are not suggesting that people deliberately infect themselves with parasitic worms but we are saying that these larger pathogens make things that help our immune system. We have evolved with both the bugs and the worms and there are consequences of that interaction, so they are important to the development of our immune system.”

Whipworm, also known as Trichuris, is a very common type of parasitic worm and infects many species of animals including millions of humans. It has also been with us and animals throughout evolution. The parasites live in the large intestine, the very site containing the bulk of the intestinal bacteria.

Heavy infections of whipworm can cause bloody diarrhoea, with long-standing blood loss leading to iron-deficiency anaemia, and even rectal prolapse. But light infections have relatively few symptoms.
Continue reading

Students Will Spend Year Doing Career-Changing Research Thanks to HHMI

This year, 116 medical, dental, and veterinary students from 47 schools across the country will take a break from memorizing molecular metabolism and studying drug interactions to spend a year in a lab doing hands-on research. The break from regular coursework, funded through a $4 million Howard Hughes Medical Institute (HHMI) initiative, is intended to give students an opportunity to immerse themselves in science and consider whether they want to pursue a career as a physician-scientist.

Nearly 500 medical students applied for the research year through the HHMI-National Institutes of Health (NIH) Medical Research Scholars and HHMI Medical Research Fellows programs. Both efforts seek to strengthen and expand the pool of medically-trained researchers. The funding HHMI provides is a great resource.

“We want medical, dental, and veterinary students to become immersed in the life of academic science for at least a year. And we hope they get so engaged in the process and life of scientific research that they will decide to continue it for the rest of their lives,” says Peter Bruns, HHMI’s vice president for grants and special programs. “We need more doctors who do basic research to improve human health.”

As part of its commitment to fostering the translation of basic research discoveries into improved diagnoses and treatments, HHMI has developed a range of programs to nurture the careers of researchers who bridge the gap between clinical medicine and basic science. In addition to the programs for medical students, the Institute supports medical training for Ph.D. students in the basic sciences and has made specific efforts to fund top physician-scientists as HHMI investigators.

The medical research scholars and fellows programs are open to medical, dental, and veterinary students enrolled in U.S. schools. Most have completed the second or third year of their professional program when they spend a year working in a lab either at the NIH or at an academic medical center or research university they select. During the last 25 years, more than 2,100 students have participated.

The HHMI Medical Research Fellowships program allows medical, dental, and veterinary students to pursue biomedical research at a laboratory anywhere in the United States except the NIH campus in Bethesda. Each student submits a research plan to work in a specific lab with a mentor they have identified. Since 1989, about 1,200 students have participated.

This year, 74 students from 26 medical schools and two veterinary schools were chosen as fellows from a pool of 274. While most students elect to stay at their home institution to do their research, this year 17 fellows will work in labs at a different school. Their research topics include schizophrenia, wound healing, organ development, and many other important biological questions.

The HHMI-NIH Research Scholars program was established in 1985 to encourage medical students to pursue research by allowing them to take a year off from their medical studies. The program has since been expanded to include dental and veterinary students. It has enabled about 1,000 students to work in NIH labs.

Students selected as research scholars often enter the program with only a general idea of what type of research they would like to do. As soon as they are accepted, they begin researching the more than 1,100 laboratories at NIH. They meet with a number potential mentors before finalizing which project to pursue under the guidance of their NIH advisor and HHMI’s staff. The students are sometimes called “cloister scholars” because they live in apartments or dorm-style rooms in a refurbished cloister on the NIH campus in Bethesda.

This year, 42 students from 28 medical schools and one veterinary school were chosen as research scholars. More than 200 students from 93 schools applied.

Related: Directory of Science and Engineering Scholarships and Fellowships$600 Million for Basic Biomedical ResearchHHMI Expands Support of Postdoctoral ScientistsGenomics Course For College Freshman Supported by HHMI at 12 Universities

A Breakthrough Cure for Ebola

A breakthrough cure for Ebola By Steven Salzberg

Last week, in what may be the biggest medical breakthrough of its kind in years, a group of scientists published results in The Lancet describing a completely new type of anti-viral treatment that appears to cure Ebola. They report a 100% success rate, although admittedly the test group was very small, just 4 rhesus monkeys.

This is a breakthrough not only because it may give us a cure for an uncurable, incredibly nasty virus, but also because the same method might work for other viruses, and because we have woefully few effective antiviral treatments. We can treat bacterial infections with antibiotics, but for most viruses, we have either a vaccine or nothing. And a vaccine, wonderful as it is, doesn’t help you after you’re already infected.

The scientists, led by Thomas Geisbert at Boston University, used a relatively new genomics technique called RNA interference to defeat the virus. Here’s how it works.
First, a little background: the Ebola virus is made of RNA, just like the influenza virus. And just like influenza, Ebola has very few genes – only 8. One of its genes, called L protein, is responsible for copying the virus itself. Two others, called VP24 and VP35, interfere with the human immune response, making it difficult for our immune system to defeat the virus.

Geisbert and his colleagues (including scientists from Tekmira Pharmaceuticals and USAMRIID) designed and synthesized RNA sequences that would stick to these 3 genes like glue. How did they do that? We know the Ebola genome’s sequence – it was sequenced way back in 1993. And we know that RNA sticks to itself using the same rules that DNA uses. This knowledge allowed Geisbert and colleagues to design a total of 10 pieces of RNA (called “small interfering RNA” or siRNA) that they knew would stick to the 3 Ebola genes. They also took care to make sure that their sticky RNA would not stick to any human genes, which might be harmful. They packaged these RNAs for delivery by inserting them into nanoparticles that were only 81-85 nanometers across.

Related: Science Explained: RNA InterferenceAmazing Science: RetrovirusesEbola Outbreak in Uganda (Dec 2007)

Food Rules: An Eater’s Manual

Good advice from author Michael Pollan on eating from his new book, Food Rules: An Eater’s Manual. Essentially he suggests eating food. Stuff you can picture in the original form (apples, cashews, celery, trout, tomatoes, grapes, steak, strawberries, milk, figs, peppers, peaches, almonds, chicken) not chemical additions (yes I know real food is made up of chemical – this is additional chemicals). One quote: “the biggest gains in human health can be made from changes in food policy.”

Human health is a complex topic but if we care about our health it is a tough issue we have to try to understand. He makes a good point in his talk about the value of exercise. I do believe exercise is an important component to how to be healthy (as is food – I don’t think it is easy to be healthy without both).

Related posts: Rethinking the Food Production SystemDon’t Eat What Doesn’t RotEat food. Not too much. Mostly plants.The Calorie Delusion

Evidence that Refined Carbohydrates Threaten the Heart

More Evidence that Refined Carbohydrates, not Fats, Threaten the Heart

Eat less saturated fat: that has been the take-home message from the U.S. government for the past 30 years. But while Americans have dutifully reduced the percentage of daily calories from saturated fat since 1970, the obesity rate during that time has more than doubled, diabetes has tripled, and heart disease is still the country’s biggest killer. Now a spate of new research, including a meta-analysis of nearly two dozen studies, suggests a reason why: investigators may have picked the wrong culprit. Processed carbohydrates, which many Americans eat today in place of fat, may increase the risk of obesity, diabetes and heart disease more than fat does – a finding that has serious implications for new dietary guidelines expected this year.

Right now, Post explains, the agency’s main message to Americans is to limit overall calorie intake, irrespective of the source. “We’re finding that messages to consumers need to be short and simple and to the point,” he says. Another issue facing regulatory agencies, notes Harvard’s Stampfer, is that “the sugared beverage industry is lobbying very hard and trying to cast doubt on all these studies.”

The medical studies about what food to eat to remain healthy can be confusing but some details are not really in doubt. So while the exact dangers of processed carbohydrates, fat, excess calories and high fructose corn syrup may be in question their is no doubt we, in the USA, are not as healthy as we should be. And food is a significant part of the problem. Eat food, not too much, mostly plants and get enough exercise is good advice.

Related: Statistical Errors in Medical StudiesResearchers Find High-Fructose Corn Syrup Results in More Weight GainThe Calorie DelusionObesity Epidemic Explained, Kind OfActive Amish Avoid Obesity

Non-infectious Prion Protein Linked to Alzheimer’s Disease

‘Harmless’ prion protein linked to Alzheimer’s disease

Non-infectious prion proteins found in the brain may contribute to Alzheimer’s disease, researchers have found.

normal prion proteins produced naturally in the brain interact with the amyloid-β peptides that are hallmarks of Alzheimer’s disease. Blocking this interaction in preparations made from mouse brains halted some neurological defects caused by the accumulation of amyloid-β peptide. It was previously thought that only infectious prion proteins, rather than their normal, non-infectious counterparts, played a role in brain degeneration.

Alzheimer’s disease has long been linked to the build-up of amyloid-β peptides, first into relatively short chains known as oligomers, and then eventually into the long, sticky fibrils that form plaques in the brain. The oligomeric form of the peptide is thought to be toxic, but exactly how it acts in the brain is unknown.

Related: Soil Mineral Degrades the Nearly Indestructible PrionPrion Proteins, Without Genes, Can EvolveClues to Prion Infectivity

Researchers Find High-Fructose Corn Syrup Results in More Weight Gain

A Princeton University research team has demonstrated that rats with access to high-fructose corn syrup gained significantly more weight than those with access to table sugar, even when their overall caloric intake was the same. In addition to causing significant weight gain in lab animals, long-term consumption of high-fructose corn syrup also led to abnormal increases in body fat, especially in the abdomen, and a rise in circulating blood fats called triglycerides

Photo of Princeton University research team, including (from left) undergraduate Elyse Powell, psychology professor Bart Hoebel, visiting research associate Nicole Avena and graduate student Miriam Bocarsly, by Denise Applewhite

Photo of Princeton University research team, including (from left) undergraduate Elyse Powell, psychology professor Bart Hoebel, visiting research associate Nicole Avena and graduate student Miriam Bocarsly, by Denise Applewhite

The first study showed that male rats given water sweetened with high-fructose corn syrup in addition to a standard diet of rat chow gained much more weight than male rats that received water sweetened with table sugar, or sucrose, in conjunction with the standard diet. The concentration of sugar in the sucrose solution was the same as is found in some commercial soft drinks, while the high-fructose corn syrup solution was half as concentrated as most sodas.

The second experiment — the first long-term study of the effects of high-fructose corn syrup consumption on obesity in lab animals — monitored weight gain, body fat and triglyceride levels in rats with access to high-fructose corn syrup over a period of six months. Compared to animals eating only rat chow, rats on a diet rich in high-fructose corn syrup showed characteristic signs of a dangerous condition known in humans as the metabolic syndrome, including abnormal weight gain, significant increases in circulating triglycerides and augmented fat deposition, especially visceral fat around the belly. Male rats in particular ballooned in size: Animals with access to high-fructose corn syrup gained 48 percent more weight than those eating a normal diet. In humans, this would be equivalent to a 200-pound man gaining 96 pounds.

“These rats aren’t just getting fat; they’re demonstrating characteristics of obesity, including substantial increases in abdominal fat and circulating triglycerides,” said Princeton graduate student Miriam Bocarsly. “In humans, these same characteristics are known risk factors for high blood pressure, coronary artery disease, cancer and diabetes.” In addition to Hoebel and Bocarsly, the research team included Princeton undergraduate Elyse Powell and visiting research associate Nicole Avena, who was affiliated with Rockefeller University during the study and is now on the faculty at the University of Florida. The Princeton researchers note that they do not know yet why high-fructose corn syrup fed to rats in their study generated more triglycerides, and more body fat that resulted in obesity.

Related: High Fructose Corn Syrup is Not Natural Food says the FDAWaste from Gut Bacteria Helps Host Control WeightAnother Strike Against ColaThe Calorie Delusion
Continue reading

Taste Cells in the Stomach and Intestine

Stomach’s Sweet Tooth

Taste, scientists are discovering, is a whole-body sensation. There are taste cells in the stomach, intestine and, evidence suggests, the pancreas, colon and esophagus. These sensory cells are part of an ancient battalion tasked with guiding food choices

Newly discovered taste cells in the gut appear to send a “prepare for fuel” message to the body, a finding that may explain a link between diet soda and diabetes risk.

The gut’s taste cells appear to be built from the same machinery as the taste cells of the tongue, the structures of which scientists have only recently nailed down. Taste cells interact with what are called “tastants” via receptors, specialized proteins that protrude from cell walls and bind to specific molecules drifting by. When a tastant binds to a receptor, it signals other molecules that, in the mouth, immediately send an “accept” or “reject” message to the brain.

Gut taste cells appear to regulate, in part, secretion of insulin, a hormone crucial for telling body tissues whether they should tap newly arrived glucose or valuable stored fat for energy.

Related: Waste from Gut Bacteria Helps Host Control WeightSurprising New Diabetes DataReducing Risk of Diabetes Through ExerciseDrinking Soda and Obesity

Engineering Mosquitoes to be Flying Vaccinators

Mosquitoes Engineered Into Flying Vaccinators by Emily Singer

Researchers in Japan have transformed mosquitoes into vaccine-carrying syringes by genetically engineering the insects to express the vaccine for leishmaniasis–a parasitic disease transmitted by the sandfly–in their saliva. According to a study in Insect Molecular Biology, mice bitten by these mosquitoes produced antibodies against the parasite. It’s not yet clear whether the immune response was strong enough to protect against infection.

“Following bites, protective immune responses are induced, just like a conventional vaccination but with no pain and no cost,” said lead researcher Shigeto Yoshida, from the Jichi Medical University in JapanYoshida, in a press release from the journal. “What’s more continuous exposure to bites will maintain high levels of protective immunity, through natural boosting, for a life time. So the insect shifts from being a pest to being beneficial.”

Researchers consider the project more of a proof of principle experiment than a viable public health option, at least for now.

Very cool.

Related: New and Old Ways to Make Flu VaccinesTreated Mosquito Nets Prevent Malariare-engineering mosquito so they cannot carry disease