Category Archives: Health Care

Engineering Delivery Systems to the Brain

Engineering a ‘Trojan horse’ to sneak drugs into the brain by Terry Devitt:

Using engineered yeast as microscopic factories to produce human antibodies customized to recognize the surface features of cells that compose the blood-brain barrier, Shusta has developed a set of unique antibodies that may one day be used to ferry drugs to specified regions of the brain.

With roughly 400 miles of blood vessels, the human brain is equipped with its own expansive delivery network for therapy – provided scientists are able to figure out a way to get past the blood-brain barrier. With different cell surface features in different parts of the circulatory system and also in different regions of the brain, it might be possible to customize antibodies to carry drugs to only those parts of the brain that would benefit from treatment.

Related: blog posts on medical breakthroughsblog posts on heath care research

MIT’s molecular sieve advances protein research

MIT’s molecular sieve advances protein research

Separating proteins from complex biological fluids such as blood is becoming increasingly important for understanding diseases and developing new treatments. The molecular sieve developed by MIT engineers is more precise than conventional methods and has the potential to be much faster.

The key to the molecular sieve, which is made using microfabrication technology, is the uniform size of the nanopores through which proteins are separated from biological fluids. Millions of pores can be spread across a microchip the size of a thumbnail.

Juhwan Yoo, a Caltech undergraduate, also participated in the research as a summer visiting student. Funding came from the National Science Foundation, the National Institutes of Health and the Singapore-MIT Alliance.

Clean Water Filter

Clean water project hit by funding drought

Charities estimate that more than a billion people do not have access to safe drinking water. In some parts of Africa, water-borne diseases such as cholera, dysentery and viral diarrhoea claim the lives of one in four children.

The Newcastle project began after a group of postgraduate civil engineering students visited Ghana, Kenya and Malaysia and recognised the huge benefits that sustainable water filtration could have on health. One of the students, Matt Simpson, decided to devote his doctoral research project to this topic.

At these temperatures the crop residue decomposes, releasing carbon dioxide gas which forms microscopic pores in the ceramic material exactly the right size to trap bacteria and viruses but allow water to pass through.

They are looking for funding to expand the adoption of this effort.

Related: Appropriate TechnologyWater and Electricity for All – Tag

Bringing Eye Care to Thousands in India

New wireless networking system brings eye care to thousands in India

With high-speed links to the hospital, three of the clinics, also known as vision centers, screen about 1,500 patients each month. (Numbers are not yet available for the two other centers, which came online in May 2006.) Centers are run by a nurse trained in eye care. Patients first see the nurse, then spend about five minutes on a web camera consulting with an Aravind doctor. If the doctor determines that a closer examination or an operation is necessary, the patient is given a hospital appointment.

Another great example of applying technology to improve people’s lives. More on appropriate technology projects. It is great to see the focus on improving people’s lives, and using technology to do so.

Related: $100 Laptops for the WorldSafe Water Through Play

The Inner Life of a Cell – Animation

Animation of the inside of a cell
The Inner Life of a Cell, an eight-minute animation created for Harvard biology students… illustrates unseen molecular mechanisms and the ones they trigger, specifically how white blood cells sense and respond to their surroundings and external stimuli.

The online video is beautiful, see – Cellular Visions: The Inner Life of a Cell. Update: Unfortunately the webcast links on that page are not working but you can see a longer version than was available via: Inner Life of a Cell – Full Version.
Continue reading

‘Virtually untreatable’ TB found

‘Virtually untreatable’ TB found:

TB presently causes about 1.7 million deaths a year worldwide, but researchers are worried about the emergence of strains that are resistant to drugs.

Drug resistance is caused by poor TB control, through taking the wrong types of drugs for the incorrect duration.

Multi-drug resistant TB (MDR TB), which describes strains of TB that are resistant to at least two of the main first-line TB drugs, is already a growing concern.

Globally, the WHO estimates there are about 425,000 cases of MDR TB a year, mostly occurring in the former Soviet Union, China and India.

TB Related posts: Extensively Drug-resistant Tuberculosis (XDR TB), May 2007Deadly TB Strain is Spreading, WHO Warns, Mar 2007Tuberculosis Pandemic Threat, Jan 2007

Related: Evolution of Antibiotic ResistanceOveruse of Antibiotics

Great Nanotechnology Overview

Reporting Risk Assessment of Nanotechnology: A reporter’s guide to sources and research issues (pdf) by Trudy E. Bell:

The article discusses how reporters should investigate the risks with nanotechnology, and in doing so provides a good introduction to concepts in nanotechnology:

If engineered nanomaterials have physical properties different from their bulk counterparts, might they also pose new risks to human health in their manufacture, use, and disposal?

As yet, no one knows. Current data basically suggest “it depends.” But researchers both in government and private
industry are keen to find out.

The potential for nanotechnology is amazing but as we have said before the risks presented by nanotechnology also need careful study.

At the nanoscale, fundamental mechanical, electronic, optical, chemical, biological, and other properties may differ significantly from properties of micrometer-sized particles or bulk materials.

One reason is surface area. Surface area counts because most chemical reactions involving solids happen at the surfaces, where chemical bonds are incomplete. The surface area of a cubic centimeter of a solid material is 6 square centimeters—about the same as one side of half a stick of gum. But the surface area of a cubic centimeter of 1-nm particles in an ultrafine powder is 6,000 square meters—literally a third larger than a football field.

Engineering Student Contest Winners Design Artificial Limb

St. Joseph's College of Engineering students

St. Joseph’s engineering college students win design contest, India:

Three students of St. Joseph’s College of Engineering received a cash award of Rs.50,000 for their prototype of an artificial limb, presented in the `National Level Engineering Students Design Contest’.

The contest, organised by the Product Development and Management Association (PDMA), was aimed at encouraging engineering students to design innovative products.

Organising secretary K. Chandrasekaran said the event was held to address the gap between education and industry, promoting design education and take students to the logical end of working prototypes.

Related: Concentrating Solar Collector wins UW-Madison Engineering Innovation AwardStanford Students Win $10,000 for Aneurysm TreatmentHopeful About India’s Manufacturing SectorIndia Manufacturing Data – compared to other countriesIndian National Level Engineering Students Design Contest web site

Oliver Sacks podcast

Oliver Sacks is a neurologist and author of interesting and entertaining books including: The Man Who Mistook His Wife For A Hat: And Other Clinical Tales. He is most known for explaining the remarkable case histories of extreme brain trauma, and how those instances allow us to learn about the brain.

Listen to webcast of his interview on NPR’s Science Friday. More blog posts on science and engineering podcasts

The Fully Immersive Mind of Oliver Sacks, Wired
Another Science Friday interview with Oliver Sacks from 1997.

Related: blog posts relating to health and biologyWeekly Science PodcastsGoogle Tech Webcastsk-12 Science Education Podcast

Engineered Immune Cells Shrink Tumors

Tumors Shrunk by Engineered Immune Cells, Scientists Say by Stefan Lovgren, on an extermintal treatment with 17 patients so far:

“This is the first example of an effective gene therapy that works in cancer patients,” said Steven Rosenberg, chief of surgery at the National Cancer Institute in Bethesda, Maryland, and leader of the research team.

The therapy has so far been applied only to melanoma patients. But the researchers are optimistic that their treatment can be used for many other types of cancer.

The team has already engineered similar immune cells for more common tumors, such as breast, lung, and liver cancers.

His team focused on T (thymus) cells, a type of specialized immune cell that can learn to recognize and attack specific “foreign” objects, such as the cancer cells that make up tumors.

In the new study, researchers created tumor-fighting cells by harvesting normal T cells from melanoma patients and genetically engineering these cells to carry receptor proteins on their surfaces that recognize cancer markers.