Category Archives: Life Science

Slime Mold and Engineers Design Similar Solution

Slime Mold Grows Network Just Like Tokyo Rail System

Talented and dedicated engineers spent countless hours designing Japan’s rail system to be one of the world’s most efficient. Could have just asked a slime mold.

When presented with oat flakes arranged in the pattern of Japanese cities around Tokyo, brainless, single-celled slime molds construct networks of nutrient-channeling tubes that are strikingly similar to the layout of the Japanese rail system, researchers from Japan and England report Jan. 22 in Science. A new model based on the simple rules of the slime mold’s behavior may lead to the design of more efficient, adaptable networks, the team contends.

The yellow slime mold Physarum polycephalum grows as a single cell that is big enough to be seen with the naked eye. When it encounters numerous food sources separated in space, the slime mold cell surrounds the food and creates tunnels to distribute the nutrients. In the experiment, researchers led by Toshiyuki Nakagaki, of Hokkaido University in Sapporo, Japan, placed oat flakes (a slime mold delicacy) in a pattern that mimicked the way cities are scattered around Tokyo, then set the slime mold loose.

Initially, the slime mold dispersed evenly around the oat flakes, exploring its new territory. But within hours, the slime mold began to refine its pattern, strengthening the tunnels between oat flakes while the other links gradually disappeared. After about a day, the slime mold had constructed a network of interconnected nutrient-ferrying tubes. Its design looked almost identical to that of the rail system surrounding Tokyo, with a larger number of strong, resilient tunnels connecting centrally located oats. “There is a remarkable degree of overlap between the two systems,” Fricker says.

Related: Thinking Slime MoldsSingle-Celled Giant Provides New Early-Evolution PerspectiveRat Brain Cells, in a Dish, Flying a PlaneHow Cells Age

Bewick’s Swan Divorce

photo of Sarindi and Sarind (by Colin Butters)

Experts stunned by swan ‘divorce’ at Slimbridge wetland

It is only the second time in more than 40 years that a “separation” has been recorded at the centre. Staff have described the new couplings as “bizarre”. It is not unheard of for the birds, which usually mate for life, to find a new mate but it tends to be because one of the pair has died, they said.

During the past four decades 4,000 pairs of Bewick’s swans have been studied at Slimbridge, with only one previous couple moving on to find new partners.

First suspicions of the rare event were raised when male swan Sarindi turned up in the annual migration from Arctic Russia without his partner of two years Saruni and with a new female – newly-named Sarind – in tow.

The pair’s arrival led conservationists to fear the worst for Saruni. But shortly afterwards Saruni arrived at the wetlands site – also with a new mate, Surune.

As for why they may have split, she said: “Failure to breed could be a possible reason, as they had been together for a couple of years but had never brought back a cygnet, but it is difficult to say for sure.”

Bewick’s swans are the smallest and rarest of the three species found in the UK and each individual can be identified by their unique bill pattern.

Related: Bewick’s swan diaryDarwin’s Beetles Surprising Sex Lives of AnimalsBackyard Wildlife: CrowsDuckling imprinted on this puppy in ChinaBird Species Plummeted After West Nile

What Dogs Reveal About Evolution

cover of the Greatest Show on Earth by Richard Dawkins

From, The Greatest Show on Earth: The Evidence for Evolution by Richard Dawkins

All breeds of dogs are domesticated wolves: not jackals, not coyotes and not foxes.

Coppinger points out that when domestic animals break free and go feral for many generations, they usually revert to something close to their wild ancestor. We might expect feral dogs, therefore, to become rather wolf-like. But this doesn’t happen. Instead, dogs left to go feral seem to become the ubiquitous “village dogs” – “pye-dogs” – that hang around human settlements all over the Third World. This encourages Coppinger’s belief that the dogs on which human breeders finally went to work were wolves no longer. They had already changed themselves into dogs: village dogs, pye-dogs, perhaps dingos.

Real wolves are pack hunters. Village dogs are scavengers that frequent middens and rubbish dumps.

Belyaev and his colleagues (and successors, for the experimental programme continued after his death) subjected fox cubs to standardised tests in which an experimenter would offer a cub food by hand, while trying to stroke or fondle it. The cubs were classified into three classes. Class III cubs were those that fled from or bit the person. Class II cubs would allow themselves to be handled, but showed no positive responsiveness to the experimenters. Class I cubs, the tamest of all, positively approached the handlers, wagging their tails and whining. When the cubs grew up, the experimenters systematically bred only from this tamest class.

After a mere six generations of this selective breeding for tameness, the foxes had changed so much that the experimenters felt obliged to name a new category, the “domesticated elite” class, which were “eager to establish human contact, whimpering to attract attention and sniffing and licking experimenters like dogs.” At the beginning of the experiment, none of the foxes were in the elite class. After ten generations of breeding for tameness, 18 per cent were “elite”; after 20 generations, 35 per cent; and after 30 to 35 generations, “domesticated elite” individuals constituted between 70 and 80 per cent of the experimental population.

The tame foxes not only behaved like domestic dogs, they looked like them. They lost their foxy pelage and became piebald black and white, like Welsh collies. Their foxy prick ears were replaced by doggy floppy ears. Their tails turned up at the end like a dog’s, rather than down like a fox’s brush. The females came on heat every six months like a bitch, instead of every year like a vixen. According to Belyaev, they even sounded like dogs.

These dog-like features were side- effects. Belyaev and his team did not deliberately breed for them, only for tameness.

The famous domesticated silver fox experiment offers interesting insight into animal traits and evolution.

Related: The Selfish Gene by Richard Dawkins – The Evolution of House CatsDarwin’s Beetles Still Producing SurprisesBackyard Wildlife: Fox

Microbes Flourish In Healthy People

Bugs Inside: What Happens When the Microbes That Keep Us Healthy Disappear? by Katherine Harmon

The human body has some 10 trillion human cells—but 10 times that number of microbial cells. So what happens when such an important part of our bodies goes missing?

“Someone who didn’t have their microbes, they’d be naked,” says Martin Blaser, a professor of microbiology and chair of the Department of Medicine at New York University Langone Medical Center in New York City.

Even though it is such an apparently integral and ancient aspect of human health, scientists are still grasping for better ways to study human microbiota—before it changes beyond historical recognition. Borrowing models from outside of medicine has helped many in the field gain a better understanding of this living world within us. “The important concept is about extinctions,” Blaser says. “It’s ecology.”

The first step in understanding these systems is simply taking stock of what archaea, bacteria, fungi, protozoa and viruses are present in healthy individuals. This massive micro undertaking has been ongoing since 2007 through the National Institutes of Health’s (NIH) Human Microbiome Project. So far it has turned up some surprisingly rich data, including genetic sequencing for some 205 of the different genera that live on healthy human skin.

Despite the flood of new data, Foxman laughs when asked if there is any hope for a final report from the Human Microbiome Project any time soon. “This is the very, very beginning,” she says, comparing this project with the NIH’s Human Genome Project, which jump-started a barrage of new genetic research. “There are basic, basic questions that we don’t know the answers to,” she says, such as how different microbiota are between random individuals or family members; how much microbiota change over time; or how related the microbiota are to each other on or inside a person’s body.

Related: Microcosm by Carl ZimmerTracking the Ecosystem Within UsAlligator Blood Provides Strong Resistance to Bacteria and VirusesBeneficial Bacteria

Fungus-gardening Ant Species Has Given Up Sex Completely

The complete asexuality of a widespread fungus-gardening ant, the only ant species in the world known to have dispensed with males entirely, has been confirmed by a team of Texas and Brazilian researchers.

photo of christian rabeling excavating ants in BrazilGraduate student Christian Rabeling excavating fungus-farming ant nests in Brasilia.

Most social insects—the wasps, ants and bees—are relatively used to daily life without males. Their colonies are well run by swarms of sterile sisters lorded over by an egg-laying queen. But, eventually, all social insect species have the ability to produce a crop of males who go forth in the world to fertilize new queens and propagate.

Queens of the ant Mycocepurus smithii reproduce without fertilization and males appear to be completely absent, report Christian Rabeling, Ulrich Mueller and their Brazilian colleagues in open access journal PLoS ONE this week.

“Animals that are completely asexual are relatively rare, which makes this is a very interesting ant,” says Rabeling, an ecology, evolution and behavior graduate student at The University of Texas at Austin. “Asexual species don’t mix their genes through recombination, so you expect harmful mutations to accumulate over time and for the species to go extinct more quickly than others. They don’t generally persist for very long over evolutionary time.”

Previous studies of the ants from Puerto Rico and Panama have pointed toward the ants being completely asexual. One study in particular, by Mueller and former graduate student Anna Himler (now at Arizona State University), showed that the ants reproduced in the lab without males, and that no amount of stress induced the production of males.

Scientists believed that specimens of male ants previously collected in Brazil in the 1960s could be males of M. smithii. If males of the species existed, it would suggest that—at least from time to time—the ants reproduce sexually.

Rabeling analyzed the males in question and discovered that they belonged to another closely related (sexually reproducing) species of fungus-farmer, Mycocepurus obsoletus, thus establishing that no males are known to exist for M. smithii. He also dissected reproducing M. smithii queens from Brazil and found that their sperm storage organs were empty.

Taken together with the previous studies of the ants, Rabeling and his colleagues have concluded that the species is very likely to be totally asexual across its entire range, from Northern Mexico through Central America to Brazil, including some Caribbean islands.

As for the age of the species, the scientists estimate the ants could have first evolved within the last one to two million years, a very young species given that the fungus-farming ants evolved 50 million years ago.

Rabeling says he is using genetic markers to study the evolution and systematics of the fungus-gardening ants and this will help determine the date of the appearance and genetic mechanism of asexual reproduction more precisely in the near future.

Full press release

Related: Bdelloid Rotifers Abandoned Sex 100 Million Years AgoAmazonian Ant Species is All Female, Reproduces By CloningFemale Sharks Can Reproduce AsexualityAmazon Molly Fish are All Female

Sumatran Tiger and Cubs Filmed by Remote Wildlife Monitoring Cameras

Video cameras installed in the Sumatran jungle in Indonesia have captured close-up footage of a tiger and two cubs. This is the first time that the World Wildlife Fund has recorded evidence of tiger breeding in central Sumatra in what should be prime tiger habitat.

The Sumatran Tiger is the smallest of all surviving tiger subspecies. Male Sumatran tigers average 204 cm (6 feet, 8 inches) in length from head to tail and weigh about 136 kg (300 lb).

Analysis of DNA is consistent with the hypothesis that the Sumatran Tigers have been isolated after a rise in sea level at the Pleistocene to Holocene border (about 12,000-6,000 years ago) from other tiger populations. The Sumatran Tiger is genetically isolated from all living mainland tigers.

Wouldn’t it be nice to see the photos those tigers could take with the awesome cat cam?

Related: Bukit Tiga Puluh National ParkUsing Cameras Monitoring To Aid Conservation EffortsRare Saharan Cheetahs PhotographedJaguars Back in the Southwest USA

Printing Bone, Muscle and More

A Pittsburgh-based research team has created and used an innovative ink-jet system to print “bio-ink” patterns that direct muscle-derived stem cells from adult mice to differentiate into both muscle cells and bone cells.

The custom-built ink-jet printer, developed at Carnegie Mellon’s Robotics Institute, can deposit and immobilize growth factors in virtually any design, pattern or concentration, laying down patterns on native extracellular matrix-coated slides (such as fibrin). These slides are then placed in culture dishes and topped with muscle-derived stem cells (MDSCs). Based on pattern, dose or factor printed by the ink-jet, the MDSCs can be directed to differentiate down various cell-fate differentiation pathways (e.g. bone- or muscle-like).

“This system provides an unprecedented means to engineer replacement tissues derived from muscle stem cells,” said Johnny Huard, professor of orthopedic surgery at the University of Pittsburgh School of Medicine and director of the Stem Cell Research Center at Children’s Hospital of UPMC. Huard has long-standing research findings that show how muscle-derived stem cells (MDSCs) from mice can repair muscle in a model for Duchenne Muscular Dystrophy, improve cardiac function following heart failure, and heal large bone and articular cartilage defects.

Weiss and Campbell, along with graduate student Eric Miller, previously demonstrated the use of ink-jet printing to pattern growth factor “bio-inks” to control cell fates. For their current research, they teamed with Phillippi, Huard and biologists of the Stem Cell Research Center at Children’s Hospital to gain experience in using growth factors to control differentiation in populations of MDSCs from mice.

The team envisions the ink-jet technology as potentially useful for engineering stem cell-based therapies for repairing defects where multiple tissues are involved, such as joints where bone, tendon, cartilage and muscle interface. Patients afflicted with conditions like osteoarthritis might benefit from these therapies, which incorporate the needs of multiple tissues and may improve post-treatment clinical outcomes.

The long-term promise of this new technology could be the tailoring of tissue-engineered regenerative therapies. In preparation for preclinical studies, the Pittsburgh researchers are combining the versatile ink-jet system with advanced real-time live cell image analysis developed at the Robotics Institute and Molecular Biosensor and Imaging Center to further understand how stem cells differentiate into bone, muscle and other cell types.

Related: Engineer Tried to Save His Sister and Invented a Breakthrough Medical DeviceNanoparticles With Scorpion Venom Slow Cancer SpreadVery Cool Wearable Computing Gadget from MITFunding Medical Research

Prion Proteins, Without Genes, Can Evolve

‘Lifeless’ prion proteins are ‘capable of evolution’

scientists transferred prion populations from brain cells to other cells in culture and observed the prions that adapted to the new cellular environment out-competed their brain-adapted counterparts. When returned to the brain cells, the brain-adapted prions again took over the population.

Charles Weissmann, head of Scripps Florida’s department of infectology who led the study, said: “On the face of it, you have exactly the same process of mutation and adaptive change in prions as you see in viruses.

“This means that this pattern of Darwinian evolution appears to be universally active. “In viruses, mutation is linked to changes in nucleic acid sequence that leads to resistance.

“Now, this adaptability has moved one level down- to prions and protein folding – and it’s clear that you do not need nucleic acid (DNA or RNA) for the process of evolution.”

He said: “The prion protein is not a clone, it is a quasi-species that can create different protein strains even in the same animal. “The abnormal prion proteins multiply by converting normal prion proteins.

“The implication of Charles Weissmann’s work is that it would be better to cut off that supply of normal prion proteins rather than risk the abnormal prion adapting to a drug and evolving into a new more virulent form.

Related: Challenging the Science Status QuoClues to Prion InfectivitySoil Mineral Degrades the Nearly Indestructible PrionBdelloid Rotifers Abandoned Sex 100 Million Years Ago

Microcosm by Carl Zimmer

cover of Microcosm by Carl Zimmer

Microcosm: E. Coli and the New Science of Life by Carl Zimmer is an excellent book. It is full of fascinating information and as usual Carl Zimmer’s writing is engaging and makes complex topics clear.

E-coli keep the level of oxygen low in the gut making the resident microbes comfortable. At any time a person will have as many as 30 strains of E. coli in their gut and it is very rare for someone ever to be free of E. coli. [page 53]

In 1943, Luria and Delbruck published the results that won them the 1969 Nobel Prize in Physiology or Medicine in which they showed that bacteria and viruses pass down their traits using genes (though it took quite some time for the scientific community at large to accept this). [page 70]

during a crisis E coli’s mutation rates could soar a hundred – or even a thousandfold… Normally, natural selection favors low mutation rates, since most mutations are harmful. But in times of stress extra mutations may raise the odds that organisms will hit on a way out of their crisis… [alternatively, perhaps] In times of stress, E coli. may not be able to afford the luxury of accurate DNA repair. Instead, it turns to the cheaper lo-fi polymerases. While they may do a sloppier job, E coli. comes out ahead [page 106]
Hybridization is not the only way foreign DNA got into our cells. Some 3 billion years ago our single-celled ancestors engulfed oxygen-breathing bacteria, which became the mitochondria on which we depend. And, like E. coli, our genomes have taken in virus upon virus. Scientists have identified more than 98,000 viruses in the human genome, along with our mutant vestiges of 150,00 others… If we were to strip out all our transgenic DNA, we would become extinct.

I highly recommend Microcosm, just as I highly recommend Parasite Rex, by Carl Zimmer.

Related: Bacteriophages: The Most Common Life-Like Form on EarthForeign Cells Outnumber Human Cells in Our BodiesAmazing Designs of LifeAmazing Science: RetrovirusesOne Species’ Genome Discovered Inside Another’s

Protein Synthesis: 1971 Video

The above webcast shows protein synthesis, from a 1971 Stanford University video with Paul Berg (Nobel Laureate – 1980 Nobel Prize for Chemistry and National Medal of Science in 1983). The film does not exactly present the traditional scientist stereotype. It does pretty much present the typical California 1970’s hippie stereotype though.

Related: Friday Fun – CERN VersionRoger Tsien Lecture On Green Florescent Protein