
Besides unraveling some of the mysteries of human variation, the research, which is featured on the cover of the Dec. 16 issue of Science, has implications for understanding a host of human diseases including cancer, diabetes and rickets.

Besides unraveling some of the mysteries of human variation, the research, which is featured on the cover of the Dec. 16 issue of Science, has implications for understanding a host of human diseases including cancer, diabetes and rickets.

Our Single-Celled Ancestors by David Pescovitz, ScienceMatters@Berkeley. Photo: propelled by their flagella, choanoflagellates move through water collecting bacteria on a collar of tentacles at the base of the cell body. (photo by Melissa Mott)
As always this issue of ScienceMatters@Berkeley includes excellent articles. Other articles from this issue: Extreme Biomaterials and Machines That Learn.
Massive Project Will Reveal How Humans Continue to Evolve by Gregory Mone
What Are Viruses?, from the excellent Science In Action blog:
Nature offers its first ever comic: Adventures in Synthetic Biology (via easternblot). Learn more about the creation of the comic. The graphics are nice, though honestly the interface to view the comic could be better. The pdf version is larger and easier to read.
I think it is great to experiment with using different ways to present scientific ideas. This comic is a good example of one of those ways. Also see several books that use cartoons to present ideas: Cartoon Guide to Genetics, Cartoon Guide to Physics and Cartoon Guide to Chemistry (all by Larry Gonick).
More comic presentations from howtoons.
Related links:

2005 Intercollegiate Genetically Engineered Machine Competition. Thirteen schools participated in the 2005 Intercollegiate Genetically Engineered Machine competition (iGEM 2005): Berkeley, Caltech, Cambridge, Davidson, ETH Zurich, Harvard, MIT, Oklahoma, Penn State, Princeton, Toronto, UCSF, and UT Austin. Learn about and sign up for the 2006 competition.
Photo of Davidson College students: Kristen DeCelle ’06 and Andrew Drysdale ’07. Davidson Students “Ace” Presentation at MIT Synthetic Biology Competition.
Can This Fruit Be Saved? by Dan Koeppel, Popular Science:
. It also turns out that the 100 billion Cavendish bananas consumed annually worldwide are perfect from a genetic standpoint, every single one a duplicate of every other. It doesn’t matter if it comes from Honduras or Thailand, Jamaica or the Canary Islands—each Cavendish is an identical twin to one first found in Southeast Asia, brought to a Caribbean botanic garden in the early part of the 20th century, and put into commercial production about 50 years ago.
That sameness is the banana’s paradox. After 15,000 years of human cultivation, the banana is too perfect, lacking the genetic diversity that is key to species health. What can ail one banana can ail all. A fungus or bacterial disease that infects one plantation could march around the globe and destroy millions of bunches, leaving supermarket shelves empty.
…
What can ail one banana can ail all. A fungus or bacterial disease that infects one plantation could march around the globe and destroy millions of bunches, leaving supermarket shelves empty.
A wild scenario? Not when you consider that there’s already been one banana apocalypse. Until the early 1960s, American cereal bowls and ice cream dishes were filled with the Gros Michel, a banana that was larger and, by all accounts, tastier than the fruit we now eat.

Scientists crack 40-year-old DNA puzzle and point to ‘hot soup’ at the origin of life:
By combining arrangements of these doublet codes together, the scientists can replicate the table of amino acids – explaining why some amino acids can be translated from groups of 2, 4 or 6 codons. They can also show how the groups of water loving (hydrophilic) and water-hating (hydrophobic) amino acids emerge naturally in the table, evolving from overlapping ‘prefix’ and ‘suffix’ codons.
The University of Bath researchers suggest that the primordial ‘doublet’ code was read in threes – but with only either the first two ‘prefix’ or last two ‘suffix’ pairs of bases being actively read.
By combining arrangements of these doublet codes together, the scientists can replicate the table of amino acids – explaining why some amino acids can be translated from groups of 2, 4 or 6 codons. They can also show how the groups of water loving (hydrophilic) and water-hating (hydrophobic) amino acids emerge naturally in the table, evolving from overlapping ‘prefix’ and ‘suffix’ codons.
…
The theory also explains how the structure of the genetic code maximises error tolerance. For instance, ‘slippage’ in the translation process tends to produce another amino acid with the same characteristics, and explains why the DNA code is so good at maintaining its integrity.
“This is important because these kinds of mistakes can be fatal for an organism,” said Dr van den Elsen. “None of the older theories can explain how this error tolerant structure might have arisen.”

Converting emissions to biofuels at GreenFuel Technologies:
The technology was tested at the MIT Cogeneration Plant (delivered 86% NOx reduction under all conditions, along with 50% CO2 reduction on rainy days, and 82% CO2 reduction on sunny day) and is now being tested at a commerical power plant.
Read news reports about the technology: Power Plants and How Algae Clean the Air
Read a more detailed report from the company: Air-Lift Bioreactors for Algal Growth on Flue Gas: Mathematical Modeling and Pilot-Plant Studies

Scientists Discover Secret Behind Human Red Blood Cell’s Amazing Flexibility: