Category Archives: Popular

The most popular posts from our blog are shown here.

The Inner Life of a Cell – Animation

Animation of the inside of a cell
The Inner Life of a Cell, an eight-minute animation created for Harvard biology students… illustrates unseen molecular mechanisms and the ones they trigger, specifically how white blood cells sense and respond to their surroundings and external stimuli.

The online video is beautiful, see – Cellular Visions: The Inner Life of a Cell. Update: Unfortunately the webcast links on that page are not working but you can see a longer version than was available via: Inner Life of a Cell – Full Version.
Continue reading

‘Virtually untreatable’ TB found

‘Virtually untreatable’ TB found:

TB presently causes about 1.7 million deaths a year worldwide, but researchers are worried about the emergence of strains that are resistant to drugs.

Drug resistance is caused by poor TB control, through taking the wrong types of drugs for the incorrect duration.

Multi-drug resistant TB (MDR TB), which describes strains of TB that are resistant to at least two of the main first-line TB drugs, is already a growing concern.

Globally, the WHO estimates there are about 425,000 cases of MDR TB a year, mostly occurring in the former Soviet Union, China and India.

TB Related posts: Extensively Drug-resistant Tuberculosis (XDR TB), May 2007Deadly TB Strain is Spreading, WHO Warns, Mar 2007Tuberculosis Pandemic Threat, Jan 2007

Related: Evolution of Antibiotic ResistanceOveruse of Antibiotics

Open Access Education Materials

Watch a video of Richard Baraniuk (Rice University professor speaking at TED) discussing Connexions: an open-access education publishing system. The content available through Connexions includes short content modules such as:

What is Engineering??:

Engineering is the endeavor that creates, maintains, develops, and applies technology for societies’ needs and desires.

One of the first distinctions that must be made is between science and engineering.

Science is the study of what is and engineering is the creation of can be.

and: Protein Folding, as well as full courses, such as: Fundamentals of Electrical Engineering I and Physics for K-12.

Related: Google technical talk webcasts (including a presentation by Richard Baraniuk at Google) – podcasts of Technical Talks at Googlescience podcast postsBerkeley and MIT courses online

Diplomacy and Science Research

Today more and more locations are becoming viable for world class research and development. Today the following have significant ability: USA, Europe (many countries), Japan, Canada, China, Brazil, Singapore, Israel, India, Korea and Australia (I am sure I have missed some this is just what come to mind as I type this post) and many more are moving in that direction.

The continued increase of viable locations for significant amounts of cutting edge research and development has huge consequences, in many areas. If paths to research and development are blocked in one location (by law, regulation, choice, lack of capital, threat of significant damage to the career of those who would choose such a course…) other locations will step in. In some ways this will be good (see below for an explanation of why this might be so). Promising new ideas will not be stifled due to one roadblock.

But risks of problems will also increase. For example, there are plenty of reasons to want to go carefully in the way of genetically engineered crops. But those seeking a more conservative approach are going to be challenged: countries that are acting conservatively will see other countries jump in, I believe. And even if this didn’t happen significantly in the area of genetically engineered crops, I still believe it will create challenges. The ability to go elsewhere will make those seeking to put constraints in place in a more difficult position than 50 years ago when the options were much more limited (It might be possible to stop significant research just by getting a handful of countries to agree).

Debates of what restrictions to put on science and technology research and development will be a continuing and increasing area of conflict. And the solutions will not be easy. Hopefully we will develop a system of diplomacy that works, but that is much easier said than done. And the United States will have to learn they do not have the power to dictate terms to others. This won’t be an easy thing to accept for many in America. The USA will still have a great deal of influence, due mainly to economic power but that influence is only the ability to influence others and that ability will decline if diplomacy is not improved. Diplomacy may not seem to be a science and engineering area but it is going to be increasingly be a major factor in the progress of science and engineering. Continue reading

The World’s Best Research Universities

Shanghai’s Jiao Tong University produces a ranking of the top universities annually (since 2003). The methodology used focuses on research (publications) and faculty quality (Fields and Nobel awards and citations). While this seems a very simplistic ranking it still provides some interesting data: highlights from the 2006 rankings of Top 500 Universities worldwide include:

Country representation in the top schools:

subscribe to Curious Cat Engineering Blog

location Top 101 % of World
Population
% of World GDP % of top 500
USA 54   4.6%   28.4%  33.4%
United Kingdom 10  0.9   5.1 8.6
Japan   6 2.0 11.2 6.4
Canada   4  0.5   2.4 8.0
The rest of Europe 18 4.4
Australia   2   0.3   1.5 3.2
Israel   1   0.1   0.3 1.4

Update: see our post on 2007 best research universities results

Top 10 schools:

  • Harvard University
  • Cambridge University
  • Stanford University
  • University of California at Berkeley
  • Massachusetts Institute of Technology(MIT)
  • California Institute of Technology
  • Columbia University
  • Princeton University
  • University Chicago
  • Oxford University

Continue reading

Google Tech Talks

Webcasts of great engineering talks at Google via: Google TechTalks

Videos include:

Toyota Robots

photo of Toyota partner robot

Toyota Announces Overview of “Toyota Partner Robot”

Toyota wants its partner robots to have human characteristics, such as being agile, warm and kind and also intelligent enough to skillfully operate a variety of devices in the areas of personal assistance, care for the elderly, manufacturing, and mobility. Furthermore, since each area requires a special set of skills, Toyota is promoting the development of three different types of partner robots (walking, rolling, and mountable), each with its own areas of expertise.

Read posts about the Toyota Productions System (TPS) on the Curious Cat Management Improvement Blog.

Others are making progress on human like robots including Sony and Honda. See Sony QRIO Robots in action in this flash video below:

And read more about Honda Robots: ASIMO and P3.

The Future is Engineering

Do Great Engineering Schools Beget Entrepreneurism? by Brent Edwards provides two great links.

How to Kick Silicon Valley’s Butt by Guy Kawasaki:

Focus on educating engineers. The most important thing you can do is establish a world-class school of engineering. Engineering schools beget engineers. Engineers beget ideas. And ideas beget companies. End of discussion.

If I had to point to the single biggest reason for Silicon Valley’s existence, it would be Stanford University—specifically, the School of Engineering. Business schools are not of primary importance because MBAs seldom sit around discussing how to change the world with great products.

Why Startups Condense in America:

You need a great university to seed a silicon valley, and so far there are few outside the US. I asked a handful of American computer science professors which universities in Europe were most admired, and they all basically said “Cambridge” followed by a long pause while they tried to think of others. There don’t seem to be many universities elsewhere that compare with the best in America, at least in technology.

Both essays make many excellent points – read them! Continue reading

MIT Hosts Student Vehicle Design Summit

Solar concept car drawing

Student summit set on vehicle design by Deborah Halbe

Seventy-three students from 21 universities around the world will gather at MIT this summer to design and build between five and 10 commuter vehicles that exploit human power, biofuels, solar technologies and fuel cells to travel at least 500 miles per gallon of fuel.

An added goal for the June 13-Aug. 13 program is to lay a foundation for ongoing multidisciplinary transportation research involving all five MIT schools. “We hope to create a project-based, socially conscious engineering curriculum for the ’06-’07 academic year,” said Anna S. Jaffe, a junior in civil and environmental engineering and one of the summit student organizers.

Image by Mitchell Joachim and William Lark, sketch of a concept solar car was created for the MIT Vehicle Design Summit.

Top degree for S&P 500 CEOs? Engineering

See more recent post with data from 2005-2009: S&P 500 CEO’s: Engineers Stay at the Top

The most common undergraduate degree for CEO’s of Fortune 500 companies is Engineering: with 20% of all CEOs (from 2005 CEO Study: A Statistical Snapshot of Leading CEOs

Another interesting point from the report (at least to those of us who grew up in Madison with a father who taught at the University of Wisconsin (teaching Chemical Engineering, Industrial Engineering and Statistics, in my father’s case, by the way):

For the second year in a row, the University of Wisconsin joins Harvard as the most common undergraduate university attended by S&P 500 CEOs. Prior to 2004, Harvard alone was the most common school attended.