Category Archives: Products

Zubbles – Get Your Colored Bubbles

photo of blue bubblephoto of blue colored bubble.

I first posted on this in 2005: Colored Bubbles. Now you can order your own via Zubbles. Colored Bubbles Have Landed (and Popped and Vanished)

Having solved the colored bubble dilemma, we spent most of 2006 trying to refine our dyes and the manufacturing process. We had invented several completely new dyes and a few derivatives of existing dyes. But the manufacturing process was long, tedious and expensive. It took three days just to make a few grams of each dye. It quickly became apparent that we needed to radically streamline the production process in order to have a viable product.

The complexities of the chemistry resembled a pharmaceutical more than a toy. So I enlisted the help of Gary Willingham, and the Belgium development team, at Fisher Scientific. Fisher is a pharmaceutical chemical manufacturer with the equipment and expertise needed to manufacture tons of our dyes.

Due to the complexities of the chemistry, Jamm decided to stay close to the production process and manufacture Zubbles in the US. The first bottles rolled off the line this week. Jamm presented me with the very first case of Zubbles. And it was a very strange feeling to finally hold the product in my hand—15 years after I mixed my first batch of dishwashing detergent and food coloring.

Being an entrepreneur is a challenge any time. When your product requires complex science and engineering that adds additional challenges. It is great to see this product is now available.

Related: Making Magnificent Mirrors with Math1979 “iPod-like” Music PlayerThe Glove – Engineering Coolnessscience and engineering gadgets and giftsBuild Your Own Tabletop Interactive Multi-touch ComputerAwesome Cat Cam

Teenage Engineer’s Company Launches Safety Stair

Young engineer launches stair aid by Geoff Adams-Spink

A young woman from Sheffield has turned a GCSE coursework project into an award-winning stair-climbing device for older and disabled people. Ruth Amos has launched her StairSteady handrail at Naidex 2008 – the annual disability exhibition in Birmingham.

She told BBC News that she was inspired to create the device for the father of one of her teachers who had had a stroke. She won an award for her idea and has now set up a company to sell it. The StairSteady is a horizontal rail at 90 degrees to the wall or banister that people can hold on to as they go up or down stairs.

The invention was then entered for the Young Engineer for Britain competition and won first prize.

Great stuff. Innovation doesn’t have to be amazing technology. Finding solutions that make people’s lives better is the key. And then showing some entrepreneurship is great, Ruth setup her company when she was 16. I wish her luck.

Related: posts on engineersEngineers Should Follow Their HeartsAutomatic Dog Washing MachineEntrepreneurial and Innovative EngineersMicrofinancing Entrepreneurs

Engineering: Cellphone Microscope

UCLA Professor Aydogan Ozcan‘s invention (LUCAS) enables rapid counting and imaging of cells without using any lenses even within a working cell phone device. He placed cells directly on the imaging sensor of a cell phone. The imaging sensor captures a holographic image of the cells containing more information than a conventional microscope. The CelloPhone received a Wireless Innovations Award from Vodafone

a wireless health monitoring technology that runs on a regular cell-phone would significantly impact the global fight against infectious diseases in resource poor settings such as in Africa, parts of India, South-East Asia and South America.

The CelloPhone Project aims to develop a transformative solution to these global challenges by providing a revolutionary optical imaging platform that will be used to specifically analyze bodily fluids within a regular cell phone. Through wide-spread use of this innovative technology, the health care services in the developing countries will significantly be improved making a real impact in the life quality and life expectancy of millions.

For most bio-medical imaging applications, directly seeing the structure of the object is of paramount importance. This conventional way of thinking has been the driving motivation for the last few decades to build better microscopes with more powerful lenses or other advanced imaging apparatus. However, for imaging and monitoring of discrete particles such as cells or bacteria, there is a much better way of imaging that relies on detection of their shadow signatures. Technically, the shadow of a micro-object can be thought as a hologram that is based on interference of diffracted beams interacting with each cell. Quite contrary to the dark shadows that we are used to seeing in the macro-world (such as our own shadow on the wall), micro-scale shadows (or transmission holograms) contain an extremely rich source of quantified information regarding the spatial features of the micro-object of interest.

By making use of this new way of thinking, unlike conventional lens based imaging approaches, LUCAS does not utilize any lenses, microscope-objectives or other bulk optical components, and it can immediately monitor an ultra-large field of view by detecting the holographic shadow of cells or bacteria of interest on a chip. The holographic diffraction pattern of each cell, when imaged under special conditions, is extremely rich in terms of spatial information related to the state of the cell or bacteria. Through advanced signal processing tools that are running at a central computer station, the unique texture of these cell/bacteria holograms will enable highly specific and accurate medical diagnostics to be performed even in resource poor settings by utilizing the existing wireless networks.

This is another great example of engineers creating technologically appropriate solutions.

Related: Better health through your cell phoneMobile Phone-based Vehicle Anti-theft SystemAppropriate Technology: Self Adjusting GlassesEngineering a Better World: Bike Corn-ShellerThe Engineer That Made Your Cat a PhotographerFreeware Wi-Fi app turns iPod into a Phone

Low-Cost Multi-touch Whiteboard Using Wii Remote

Using infrared (IR) light pens and the Wii Remote, it is possible to create very low-cost multi-point interactive whiteboards and multi-point tablet displays. Johnny Chung Lee, Carnegie Mellon University. Download the software. Great stuff, it is wonderful to see what people can create with technology.

Related: Very Cool Wearable Computing Gadget from MITBuild Your Own Tabletop Interactive Multi-touch ComputerWhiteboard Mechanical Simulation System (from MIT)How Do Wii Game Controllers Work?

Honda U3-X Personal Transport

Honda and Toyota continue to develop personal transport and personal robotics assistance products. While other car companies can barely stay in business Honda and Toyota not only are doing well (even if Toyota will lose money this year) they are investing in the future and pushing strong engineering programs. I must say the personal transportation devices seem less than awesome to me though this video does make the Honda U3-X seem reasonable – better than the Toyota Winglet looked.

Honda unveiled U3-X, a compact experimental device that fits comfortably between the rider’s legs, to provide free movement in all directions – forward, backward, side-to-side, and diagonally. Honda will continue research and development of the device including experiments in a real-world environment to verify the practicality of the device.

This new personal mobility device makes it possible to adjust speed and move, turn and stop in all directions when the rider leans the upper body to shift body weight. This was achieved through application of advanced technologies including Honda’s balance control technology, which was developed through the robotics research of ASIMO, Honda’s bipedal humanoid robot, and the world’s first omni-directional driving wheel system (Honda Omni Traction Drive System, or HOT Drive System), which enables movement in all directions, including not only forward and backward, but also directly to the right and left and diagonally. In addition, this compact size and one-wheel-drive personal mobility device was designed to be friendly to the user and people around it by making it easier for the rider to reach the ground from the footrest and placing the rider on roughly the same eye level as other people or pedestrians.

Related: Honda’s Robolegs Help People WalkToyota Develops Thought-controlled WheelchairHonda has Never had Layoffs and has been Profitable Every YearToyota Engineering Development ProcessToyota Robots

Volkswagen Fun Theory: Piano Staircase

Volkswagen built this piano stairway in Stockholm, Sweden as part of their fun theory project, which aims to change people’s behavior for the better through fun. That is a great strategy.

Related: Water Pump Merry-go-RoundFold.it – the Protein Folding GameEngineers Should Follow Their HeartsUsing Capitalism to Make a Better WorldToyota Robots

Car Style Mass Transit Mag Lev System

Skytran is a very cool sounding transportation option. It promises, individual transportation modules traveling at 100 miles per hour within the city nonstop to many more points than light rail can service. The current non-solutions we have been attempting for decades of building more and more roads is not working.

The costs is estimated at much cheaper than other alternatives. It would be great if something like this could actually make it (it is much easier to dream about possibilities than to bring them into the world).

From the SkyTran web site:

It works like a taxi that picks you up and drives you to your destination. You travel only with people you choose to, in personal-sized vehicles. The electric vehicles are automatically driven at a constant speed on the main guideway. Like on a freeway, you travel non-stop until taking an exit-ramp at your destination. Also like a freeway, instead of intersections PRT has over-passes so you truly never have to stop… vehicles are lined up waiting for you at boarding stations, and after you get out, they either line up to wait for another rider, or go park themselves and wait for peak periods when they’ll be needed.

At 60 mph the electricity for SkyTran would cost less than 1 cent per mile (at current electricity costs of 11 cents per kWhr). By comparison, buying gas for a 30-MPG car at $2/gallon costs more than 7 times as much.

The site estimates the cost at$10 million per mile for one-way track and $15 million per mile for two-way track. Fundamentally, SkyTran track can be cheaply built because all of the components are very light-weight. Weight is why roads and trains cost so much… In comparison, SkyTran’s guideway only needs to support one 1000 pound (loaded) vehicle at a time… See the detailed cost evaluation page.
Continue reading

William Kamkwamba on the Daily Show

Pointy haired bosses removed the video. Argh!

William Kamkwamba on the Daily show. I first posted about William’s great work in 2007 – Home Engineering: Windmill for Electricity. What a great example of what can be done by sharing scientific and engineering ideas with those who will make the effort to create workable solutions.

William has written a book on his life: The Boy Who Harnessed the Wind.

Related: Inspirational EngineerMake the World Betterposts on engineersposts on Africa

The Nobel Prize in Physics 2009

The 2009 Nobel Prize in Physics honors three scientists, who have had important roles in shaping modern information technology, with one half to Charles Kuen Kao and with Willard Sterling Boyle and George Elwood Smith sharing the other half. Kao’s discoveries have paved the way for optical fiber technology, which today is used for almost all telephony and data communication. Boyle and Smith have invented a digital image sensor – CCD, or charge-coupled device – which today has become an electronic eye in almost all areas of photography. The Nobel prize site includes great information on the science behind the research that has been honored:

The first ideas of applications of light guiding in glass fibers (i.e. small glass rods) date from the late 1920’s. They were all about image transmission through a bundle of fibers. The motivation was medicine (gastroscope), defense (flexible periscope, image scrambler) and even early television. Bare glass fibers were, however, quite leaky and did not transmit much light. Each time the fibers were touching each other, or when the surface of the fibers was scratched, light was led away from the fibers. A breakthrough happened in the beginning of the 1950’s with the idea and demonstration that cladding the fibers would help light transmission, by facilitating total internal reflection.

Optical communication of today has reached its present status thanks to a number of breakthroughs. Light emitting diodes (LEDs) and especially diode lasers, first based on GaAs (800-900 nm) and later on InGaAsP (1-1.7 m), have been essential. The optical communication window has evolved from 870 nm to 1.3 m and, finally, to 1.55 m where fiber losses are lowest. Gradient-index fibers were used in the first optical communication lines. However, when moving towards longer wavelengths and longer communication distances, single-mode fibers have become more advantageous.

Nowadays, long-distance optical communication uses single mode fibers almost exclusively, following Kao’s vision. The first such systems used frequent electronic repeaters to compensate for the remaining losses. Most of these repeaters have now been replaced by optical amplifiers, in particular erbium-doped fiber amplifiers. Optical communication uses wavelength division multiplexing with different wavelengths to carry different signals in the same fiber, thus multiplying the transmission rate. The first non-experimental optical fiber links were installed in 1975 in UK, and soon after in the US and in Japan. The first transatlantic fiber-optic cable was installed in 1988.

Related: How telephone echoes lead to digital cameras2007 Nobel Prize in Physics2006 Nobel Prize in Physicsposts on Nobel laureates

3D Printing is Here

photo of objects printed using a 3D printerPhoto by Jessica Sabo at the at 2009 Annual ASEE Conference.

The Future of Printing is 3D [I removed the broken link]

At this year’s annual ASEE Conference in Austin, one of the main topics of conversation started with the question, “have you seen the 3D printer?”. The company Stratasys, Inc. has created their Dimension 3D Printers. Their latest innovation is their line of uPrint machines, which are less costly (prices starting at $14,900)

Jesse Roitenberg, the representative from Stratasys at the conference, explained the benefits of using 3D printing as opposed to building models by hand:

“With a 3D printer, you are actually able to create an object as you had designed it. Once the object is created, the designer is then able to hold, test and verify the design. The object created is more accurate and the process is less time consuming.”

The Dimension 3D printers have been used in both educational facilities and the workplace, benefiting everyone from engineers to middle school science teachers. Below is a video of Jay Leno explaining how he was able to use the 3D printer to recreate an old steam engine car part.

Related: Open Source 3-D PrintingA plane You Can PrintCool Mechanical Simulation SystemTransferring Train Passengers Without Stopping
Continue reading