Category Archives: Research

Amazonian Ant Species is All Female, Reproduces By Cloning

Ants inhabit ‘world without sex’

The ants reproduce via cloning – the queen ants copy themselves to produce genetically identical daughters. This species – the first ever to be shown to reproduce entirely without sex – cultivates a garden of fungus, which also reproduces asexually.

Dr Himler’s interest in Mycocepurus smithii was originally sparked not by their unusually biased sex ratio, but by their ability to cultivate crops. “Ants discovered farming long before we did – they have been cultivating fungus gardens for an estimated 80 million years.

“They collect plant material, insect faeces and even dead insects from the forest floor and feed it to their crops,” she said.

Related: Royal Ant GenesBdelloid Rotifers Abandoned Sex 100 Million Years AgoBlind “Ant From Mars” Found in AmazonAmazon Molly Fish are All Female

New Yorkers Help Robot Find Its Way in the Big City

Tweenbots by Kacie Kinzer

I wondered: could a human-like object traverse sidewalks and streets along with us, and in so doing, create a narrative about our relationship to space and our willingness to interact with what we find in it? More importantly, how could our actions be seen within a larger context of human connection that emerges from the complexity of the city itself? To answer these questions, I built robots.

Tweenbots are human-dependent robots that navigate the city with the help of pedestrians they encounter. Rolling at a constant speed, in a straight line, Tweenbots have a destination displayed on a flag, and rely on people they meet to read this flag and to aim them in the right direction to reach their goal.

The results were unexpected. Over the course of the following months, throughout numerous missions, the Tweenbots were successful in rolling from their start point to their far-away destination assisted only by strangers. Every time the robot got caught under a park bench, ground futilely against a curb, or became trapped in a pothole, some passerby would always rescue it and send it toward its goal. Never once was a Tweenbot lost or damaged. Often, people would ignore the instructions to aim the Tweenbot in the “right” direction, if that direction meant sending the robot into a perilous situation. One man turned the robot back in the direction from which it had just come, saying out loud to the Tweenbot, “You can’t go that way, it’s toward the road.”

Very cool, fun and interesting. Cute integration of technology, psychology and an inquisitive scientific mind.

Related: The Science of KissingOpen Source for LEGO MindstormsRobot Finds Lost Shoppers and Provides DirectionsMaking Robots from Trash

Bacteria Communicate Using a Chemical Language

Each person has about 1 trillion human cells and about 10 trillion bacterial cells. In the webcast Bonnie Bassler, Department of Molecular Biology at Princeton University, discusses the chemical language that lets bacteria coordinate defense and mount attacks (quorum sensing). The find has stunning implications for medicine, industry — and our understanding of ourselves.

Bacteria do all sorts of amazing things for us: educating your immune system to keep bad microbes out, they digest our food, they make our vitamins…

Related: Disrupting Bacteria CommunicationTracking the Ecosystem Within UsBeneficial Bacteria

Why Toddlers Don’t Do What They’re Told

Why Toddlers Don’t Do What They’re Told

Toddlers listen, they just store the information for later use, a new study finds.

“I went into this study expecting a completely different set of findings,” said psychology professor Yuko Munakata at the University of Colorado at Boulder. “There is a lot of work in the field of cognitive development that focuses on how kids are basically little versions of adults trying to do the same things adults do, but they’re just not as good at it yet. What we show here is they are doing something completely different.”

“If you just repeat something again and again that requires your young child to prepare for something in advance, that is not likely to be effective,” Munakata said. “What would be more effective would be to somehow try to trigger this reactive function. So don’t do something that requires them to plan ahead in their mind, but rather try to highlight the conflict that they are going to face. Perhaps you could say something like ‘I know you don’t want to take your coat now, but when you’re standing in the yard shivering later, remember that you can get your coat from your bedroom.”

Related: Kids Need Adventurous PlayScience to PreschoolersSarah, aged 3, Learns About SoapKids on Scientists: Before and AfterPlaying Dice and Children’s Numeracy

Using Virus to Build Batteries

MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery. We have posted about similar things previously, for example: Virus-Assembled BatteriesUsing Viruses to Construct Electrodes and Biological Molecular Motors. New virus-built battery could power cars, electronic devices

Gerbrand Ceder of materials science and Associate Professor Michael Strano of chemical engineering, genetically engineered viruses that first coat themselves with iron phosphate, then grab hold of carbon nanotubes to create a network of highly conductive material.

Because the viruses recognize and bind specifically to certain materials (carbon nanotubes in this case), each iron phosphate nanowire can be electrically “wired” to conducting carbon nanotube networks. Electrons can travel along the carbon nanotube networks, percolating throughout the electrodes to the iron phosphate and transferring energy in a very short time. The viruses are a common bacteriophage, which infect bacteria but are harmless to humans.

The team found that incorporating carbon nanotubes increases the cathode’s conductivity without adding too much weight to the battery. In lab tests, batteries with the new cathode material could be charged and discharged at least 100 times without losing any capacitance. That is fewer charge cycles than currently available lithium-ion batteries, but “we expect them to be able to go much longer,” Belcher said.

This is another great example of university research attempting to find potentially valuable solutions to societies needs. See other posts on using virus for productive purposes.

Robot with Biological Brain

The Living Robot by Joe Kloc

Life for Warwick’s robot began when his team at the University of Reading spread rat neurons onto an array of electrodes. After about 20 minutes, the neurons began to form connections with one another. “It’s an innate response of the neurons,” says Warwick, “they try to link up and start communicating.”

For the next week the team fed the developing brain a liquid containing nutrients and minerals. And once the neurons established a network sufficiently capable of responding to electrical inputs from the electrode array, they connected the newly formed brain to a simple robot body consisting of two wheels and a sonar sensor.

At first, the young robot spent a lot of time crashing into things. But after a few weeks of practice, its performance began to improve as the connections between the active neurons in its brain strengthened. “This is a specific type of learning, called Hebbian learning,” says Warwick, “where, by doing something habitually, you get better at doing it.”

“It’s fun just looking at it as a robot life form, but I think it may also contribute to a better understanding of how our brain works,” he says. Studying the ways in which his robot learns and stores memories in its brain may provide new insights into neurological disorders like Alzheimer’s disease.

Related: Roachbot: Cockroach Controlled RobotRat Brain Cells, in a Dish, Flying a PlaneHow The Brain Rewires ItselfBrain Development

Cardiac Cath Lab: Innovation on Site

photo of Cath LabPhoto of John Cooke at the Cardiac Catheterisation Labs at St. Thomas’ hospital in London

I manage several blogs on several topics that are related. Often blog posts stay firmly in the domain of one blog of the other. Occasionally the topic blurs the lines between the various blogs (which I like). This post ties directly to my Curious Cat Management Improvement Blog. The management principles I believe in are very similar to engineering principles (no surprise given this blog). And actual observation in situ is important – to understand fully the situation and what would be helpful. Management relying on reports instead of seeing things in action results in many poor decisions. And engineers doing so also results in poor decisions.

Getting to Gemba – a day in the Cardiac Cath Lab by John Cooke

I firmly believe that it is impossible to innovate effectively without a clear understanding of the context and usage of your final innovation. Ideally, I like to “go to gemba“, otherwise known as the place where the problem exists, so I can dig for tacit knowledge and observe unconscious behaviours.

I didn’t disgrace myself and I’ve been invited back for another day or so. What did I learn that I didn’t know before? The key things I learnt were:

  • the guide wire isn’t just a means of steering the catheter into place as I thought. It is a functional tool in it’s own right
  • Feel is really critical to the cardiologist
  • There is a huge benefit in speeding up procedures in terms of patient wellbeing and lab efficiency
  • Current catheter systems lack the level of detection capability and controllability needed for some more complex PCIs (Percutaneous Cardiac Interventions)

The whole experience reminded me that in terms of innovation getting to gemba is critical. When was the last time you saw your products in use up-close and personal?

Related: Jeff Bezos Spends a Week Working in Amazon’s Kentucky Distribution CenterToyota Engineering Development ProcessMarissa Mayer on Innovation at GoogleBe Careful What You MeasureS&P 500 CEOs are Often Engineering GraduatesExperiment Quickly and Often

Value of Prostate Cancer Screening Questioned by Two Studies

Ben Goldacre, in his bad science blog, again takes on journalist’s articles of health research in: Venal, misleading, pathetic, dangerous, stupid, and busted

1410 men would need to be screened to prevent one death. For each death prevented, 48 people would need to be treated: and prostate cancer treatment has a high risk of very serious side effects like impotence and incontinence. These figures are not hard to find: they are in the summary of the research paper.

For complex risk decisions like screening, it has been shown in three separate studies that patients, doctors, and NHS purchasing panels make more rational decisions about treatments and screening programmes when they are given the figures as real numbers, as I did above, instead of percentages. I’m not saying that PSA screening is either good or bad: I am saying that people deserve the figures in the clearest form possible so they can make their own mind up.

So newspapers ignore one half of the evidence, and they fail to explain the other half properly.

They can also link directly and transparently to scientific papers, which mainstream media still refuses to do. Journalists insist that we need professionals to mediate and explain science. From today’s story, their self belief seems truly laughable.

He also says some journalists got it right including the Washington Post in, Prostate Cancer Screening May Not Reduce Deaths:

The PSA blood test, which millions of men undergo each year, did not lower the death toll from the disease in the first decade of a U.S. government-funded study involving more than 76,000 men, researchers reported yesterday. The second study, released simultaneously, was a European trial involving more than 162,000 men that did find fewer deaths among those tested. But the reduction was relatively modest and the study showed that the tests resulted in a large number of men undergoing needless, often harmful treatment.

I think it is true that most people need help having science mediated to some extent. But he is also right that those doing so need to do better. And also everyone needs to learn about science to understand the choices they personally and politically (for policy issues) need to make decisions on. Being scientifically illiterate is dangerous.

Related: Science JournalismPoor Reporting and Unfounded ImplicationsStudy Finds No Measurable Benefit to Flu ShotsHow Prozac Sent Science Inquiry Off Track

Image of Viral Coat

image of exterior of virus - made up of 5 million atomsHigh-energy X-ray diffraction was used to pinpoint some 5 million atoms in the protective protein coat of the PsV-F virus. The coat’s symmetrical features are shared by hundreds of viruses. The red and yellow sections illustrate how building blocks of four proteins come together to form the spherical shell.

The image reveals the structure of a type of protein coat shared by hundreds of known viruses containing double-stranded RNA genomes. The image was painstakingly created from hundreds of high-energy X-ray diffraction images and paints the clearest picture yet of the viruses’ genome-encasing shell called a “capsid.”

Viruses can reproduce themselves only by invading a host cell and highjacking its biochemical machinery. But when they invade, viruses need to seal off their genetic payload to prevent it from being destroyed by the cell’s protective mechanisms. Though there are more than 5,000 known viruses, including whole families that are marked by wide variations in genetic payload and other characteristics, most of them use either a helical or a spherical capsid.

“Spherical viruses like this have symmetry like a soccer ball or geodesic dome,” Pan said. “The whole capsid contains exactly 120 copies of a single protein.” Previous studies had shown that spherical capsids contain dozens of copies of the capsid protein, or CP, in an interlocking arrangement. The new research identified the sphere’s basic building block, a four-piece arrangement of CP molecules called a tetramer, which could also be building blocks for other viruses’ protein coats.

Full press release

Related: Viruses and What is LifeViruses Eating BacteriaMRI That Can See Bacteria, Virus and ProteinsFinding the Host Genes Viruses Require

Continuing Bee Colony Collapse Disorder

Photo of a bee

‘I do everything… the bees still die’

The use of the term colony collapse disorder has been criticised by some scientists and other experts who say that it’s often an excuse for poor beekeeping. David sighs heavily.

“Well… I don’t abuse my bees, I kinda take offence at that, when we transport them we take great pains to make sure they arrive safely, to make sure they have water. It’s totally unexplained.

“That’s the frustrating part. There’s no reason that these bees here should be in this shape, just three months ago they were beautiful bees, they were large thriving colonies, and to have them dwindle down to one or two or frames of bees is beyond comprehension as far as I’m concerned.”

But despite the disappearance of his bees, and the lack of clarity about what’s causing it, David remains an optimist. He points to a small discreet emblem on the side of his pickup truck, a hieroglyph of an ancient bee.

“That little hieroglyph there is Egyptian it stands for a beekeeper or bees. It’s an ancient craft; it’s been around a long time. The bees will endure.”

Photo by Justin Hunter

Related: Bye Bye BeesColony Collapse Disorder ContinuesPenn State Program Promotes Pollinator-Friendly GardeningA Survey of Honey Bee Colony Losses in the U.S., Fall 2007 to Spring 2008