Category Archives: Research

Big Drug Research and Development on Campus

Big Drug R&D on Campus

Merck and Harvard just signed an agreement to develop treatments for the bone disease osteoporosis. On Apr. 25 rival Pfizer (PFE) invested $14 million in an alliance with four universities to study diabetes and obesity.

Drugmakers are counting on these deals to solve a persistent problem: underperforming product pipelines. Merck, Pfizer, and others have been losing sales of one blockbuster drug after another as patents expire and competitors charge in with generics. Big drug companies have fought back by spending more on research, yet the number of new medicines approved each year is falling. In the last week of April alone, the U.S. Food & Drug Administration rejected two of Merck’s experimental drugs, prompting the company to lay off 1,200 salespeople.

Past deals between industry and academia have been hampered by patent disputes and tussles over publication rights, as companies tried to thwart academics who want to share their discoveries with colleagues around the world. So now the companies have devised policies allowing their Ivory Tower partners to patent and publish their discoveries, even as they draw the professors more deeply into corporate affairs.

Funding university activities this way can lead to conflicts and problems but realistically huge amounts of funding are entangled with possible conflicts of interest. The biggest concern I is that universities will bow to the almighty dollar instead of their missions. And inadequate oversight can damage their credibility (not one failure, most likely, but if a pattern emerges). For example: Researchers Fail to Reveal Full Drug Pay (“The Harvard group’s consulting arrangements with drug makers were already controversial because of the researchers’ advocacy of unapproved uses of psychiatric medicines in children.”). Then find out the companies were paying them well, the professors failed to disclose that and the advocacy is rightfully questioned.

Related: From Ghost Writing to Ghost Management in Medical JournalsFunding Medical ResearchMedical Study Integrity (or Lack Thereof)Marketing Drugs

Pax Scientific

Nature Gave Him a Blueprint, but Not Overnight Success

Mr. Harman is a practitioner of biomimicry, a growing movement of the industrial-design field. Eleven years ago, he established Pax Scientific to commercialize his ideas, thinking that it would take only a couple of years to convince companies that they could increase efficiency, lower noise or create entirely new categories of products by following his approach.

His radical ideas have so far found a cautious reception in the aircraft, air- conditioning, boating, pump and wind turbine industries. Mr. Harman’s experience is not unusual. Rather than beating a path to the door of mousetrap designers, the world seems to actively avoid them.

Even in fields such as the computer industry, which celebrates innovation, systemic change can be glacial.

In another hopeful sign, a world that long ignored energy efficiency is suddenly thinking of nothing else. “We tried for years to promote energy conservation, and we couldn’t find one who was interested,” he said. “Now the world has done a U-turn.”

Yet another example that new knowledge is not enough. It takes much longer for good ideas to be put into practice than seems reasonable (until you get your head around the idea it takes a fair amount of time for new ideas to be adopted).

One positive aspect of this reality is that if you can take advantage of new ideas before others you can gain an advantage. It isn’t necessarily true that just because now everyone knows about some new idea that you have no opportunity to use the knowledge before others.

Related: The Future is EngineeringEngineering the Boarding of AirplanesReduce Computer Waste100 Innovations for 2006Innovation at GoogleEducational Institutions Economic Impact

Big Fat Lie

cover of diet delusion

Big fat lie

‘I got actively attacked, but I guess I had to be,’ Taubes says. ‘What are the chances of writing an article that says the entire medical establishment is wrong, and them going, ” Good point, thank you, Gary. Can we give you an award?” When people challenge the establishment, 99.9 per cent of the time they are wrong. If I was writing about me, I’d begin from the assumption that I am both wrong and a quack.’

At least he is right on this. You challenge the accepted scientific understanding and this is what will happen. But if the evidence is there scientists will be won over by the evidence over time.

‘Reading the research was a reawakening for me,’ he says. ‘I did all the things that the rest of us did. I ate a low-fat diet, went to the gym and was getting heavier anyway. But once you flip your way of thinking about it, it seems so absurd: the idea that what you put in minus what you expend equals how fat you are. Our bodies don’t work like a car. We are not thermodynamic black boxes; we are biological organisms and we have evolved complex systems of hormones and enzymes and proteins. That’s how we are regulated.’

The obesity epidemic began in America during the late 1970s, which is also when the low-fat, high-carb diet-and-exercise revolution began. ‘You have a starting point,’ says Taubes. ‘The question is what is causing it? Then I realised that we were first told to eat less fat in the late 1970s, and, if you eat less fat, you start to eat more carbohydrates – it’s a trade-off.’

The whole healthy eating debate is sure not easy to figure out. But I think some things are clear. Eating too many calories and not exercising enough are problems. And it also makes sense that it is not only the number of calories that matter but what type. We are biological beings and how we process food is not just by a count of the calories. It seems the evidence of bad effects of too much carbohydrates is growing.

It also makes perfect sense that our bodies evolved to store energy for worse times (and some of us have bodies better at doing that). Now we are in a new environment where (at least for many people alive today) finding enough calories is not going to be a problem so it would be nice if we could tell our bodies to get less efficient at storing fat for bad times ahead. But we can’t so we need to take actions to remain healthy given the how our body reacts to what we eat and do. And it seems one of those actions might mean we have to eat less than we might want to.

Related: The Diet Delusion by Gary Taubes – Eat food. Not too much. Mostly plants.Obesity Epidemic Explained, Kind OfDon’t Eat What Doesn’t RotGood Calories, Bad Calories by Gary Taubes – Energy Efficiency of DigestionAnother Strike Against Cola

Still Just a Lizard

Still just a lizard by PZ Myers

in 1971, scientists started an experiment. They took 5 male lizards and 5 female lizards of the species Podarcis sicula from a tiny Adriatic island called Pod Kopiste, 0.09km2, and they placed them on an even tinier island, Pod Mrcaru, 0.03km2, which was also inhabited by another lizard species, Podarcis melisellensis. Then a war broke out, the Croatian War of Independence, which went on and on and meant the little islands were completely neglected for 36 years, and nature took its course. When scientists finally returned to the island and looked around, they discovered that something very interesting had happened.

The original population of P. sicula was still present on Pod Kopiste, so we have a nice control population. These lizards are small, fast, insect-eaters in which the males defend territories. Sadly, P. melisellensis on Pod Mrcaru had been extirpated. So we had a few innocent casualties of the experiment.

The transplanted P. sicula thrived and swarmed over the island of Pod Mrcaru, but they were different, and they had evolved in multiple ways.

The original P. sicula were insectivores who occasionally munched on a leaf; approximately 4-7% of their diet was vegetation. The P. sicula of Pod Mrcaru, though, had adopted a more vegetarian diet: examining their gut contents revealed that 34% of their diet was plants in the spring, climbing to 61% in the summer…and much of this diet was hard-to-digest stuff, high in cellulose. This is a fairly radical shift.

There were concomitant changes. The lizards’ skulls were wider, deeper, and longer, and they had stronger bites — a necessity for chomping off bits of tough plants, instead of soft mosquitos. Instead of chasing bugs, they’re browsing stationary plants, and their legs are shorter and they are slower. Population densities are higher. The Pod Mrcaru lizards no longer seem to defend territories, so there have been behavioral changes.

Still just a lizard, I know.

Now here’s something really cool, though: these lizards have evolved cecal valves. What those are are muscular ridges in the gut that allow the animal to close off sections of the tube to slow the progress of food through them, and to act as fermentation chambers where plant material can be broken down by commensal organisms like bacteria and nematodes — and the guts of Pod Mrcaru P. sicula are swarming with nematodes not found in the guts of their Pod Kopiste cousins.

Related: Evolution is Fundamental to ScienceEvolution at Work with the Blue Moon ButterflyTwo Butterfly Species Evolved Into ThirdGecko Tape

Materials Engineers Create Perfect Light “sponge”

Materials engineers create perfect light “sponge”

The team designed and engineered a metamaterial that uses tiny geometric surface features to successfully capture the electric and magnetic properties of a microwave to the point of total absorption.

“Three things can happen to light when it hits a material,” says Boston College Physicist Willie J. Padilla. “It can be reflected, as in a mirror. It can be transmitted, as with window glass. Or it can be absorbed and turned into heat. This metamaterial has been engineered to ensure that all light is neither reflected nor transmitted, but is turned completely into heat and absorbed. It shows we can design a metamaterial so that at a specific frequency it can absorb all of the photons that fall onto its surface.”

The metamaterial is the first to demonstrate perfect absorption and unlike conventional absorbers it is constructed solely out of metallic elements, giving the material greater flexibility for applications related to the collection and detection of light, such as imaging, says Padilla, an assistant professor of physics.

Related: Perfect Metamaterial Absorber letter (in Physical Review Letters) – Light to Matter to LightDelaying the Flow of Light on a Silicon ChipParticles and Wavesother posts linking to open access papers

Nobel Laureate Initiates Symposia for Student Scientists

   
The video shows a portion of Oliver Smithies’ Nobel acceptance lecture. See the rest of the speech, and more info, on the Nobel Prize site.

As an undergraduate student at Oxford University in the 1940s, Oliver Smithies attended a series of lectures by Linus Pauling, one of the most influential chemists of the 20th century. It was a powerful experience, one that sparked the young scientist’s ambitions and helped launch his own eminent career.

“It was tremendously inspiring,” says Smithies, one of three scientists who shared the Nobel Prize in Medicine in 2007. “People were sitting in the aisles to listen to him.”

Now Smithies, who was a genetics professor at the University of Wisconsin-Madison from 1960-88, is taking it upon himself to expose a new generation of undergraduates to this sort of experience. Using the prize money that came with his Nobel Prize, Smithies is funding symposia at all four universities he has been affiliated with throughout his scientific career: Oxford, the University of Toronto, UW-Madison and the University of North Carolina, where he is currently the Excellence Professor of Pathology and Laboratory Medicine. Each university will receive about $130,000 to get things started.

“He wants the symposium to be a day when we bring the very best in biology to campus to interact with the students,” says geneticist Fred Blattner, who is in charge of organizing the symposium at UW-Madison and who collaborated with Smithies when their careers paths overlapped in Wisconsin.

The first of two speakers at the UW-Madison’s inaugural Oliver Smithies Symposium will be Leroy Hood, director of the Institute for Systems Biology, located in Seattle. Hood is a pioneer of high-throughput technologies and was instrumental in developing the technology used to sequence the human genome. More recently, Hood has focused his efforts on systems biology, the field of science in which researchers create computer models to describe complex biological processes, such as the development of cancer in the body. He is also at the forefront of efforts to use computer models to help doctors tailor drugs and dosages to an individual’s genetic makeup.
Continue reading

New Iron Based Superconductors

Research Suggests Novel Superconductor Is in a Powerful Class All its Own

discovered surprising magnetic properties in the new superconductors that suggest they may have very powerful applications — from improved MRI machines and research magnets, to a new generation of superconducting electric motors, generators and power transmission lines. The research also adds to the long list of mysteries surrounding superconductivity, providing evidence that the new materials, which scientists are calling “doped rare earth iron oxyarsenides,” develop superconductivity in quite a new way

Early this year, Japanese scientists who had been developing iron-based superconducting compounds for several years, finally tweaked the recipe just right with a pinch of arsenic. The result: a superconductor, also featuring oxygen and the rare earth element lanthanum, performing at a promising -413 degrees F (26 K). The presence of iron in the material was another scientific stunner: Because it’s ferromagnetic, iron stays magnetized after exposure to a magnetic field, and any current generates such a field. As a rule, magnetism’s effect on superconductivity is not to enhance it, but to kill it.

Iron based superconductors might resist magnetic fields over 100 Tesla

The new superconductors seem like they will be able to make improved MRI machines and research magnets, a new generation of superconducting electric motors, generators and power transmission lines. Tesla is a unit of magnetic field strength; the Earth’s magnetic field is one twenty thousandth of a tesla.

Related: Superconducting SurpriseMystery of High-Temperature SuperconductivitySuperconductivity and Superfluidity

Bacteria “Feed” on Earth’s Ocean-Bottom Crust

Bacteria “Feed” on Earth’s Ocean-Bottom Crust

Once considered a barren plain dotted with hydrothermal vents, the seafloor’s rocky regions appear to be teeming with microbial life, say scientists

“Initial research predicted that life could in fact exist in such a cold, dark, rocky environment,” said Santelli. “But we really didn’t expect to find it thriving at the levels we observed.” Surprised by this diversity, the scientists tested more than one site and arrived at consistent results, making it likely, according to Santelli and Edwards, that rich microbial life extends across the ocean floor. “This may represent the largest surface area on Earth for microbes to colonize,” said Edwards.

Santelli and Edwards also found that the higher microbial diversity on ocean-bottom rocks compared favorably with other life-rich places in the oceans, such as hydrothermal vents. These findings raise the question of where these bacteria find their energy, Santelli said.

“We scratched our heads about what was supporting this high level of growth,” Edwards said. With evidence that the oceanic crust supports more bacteria than overlying water, the scientists hypothesized that reactions with the rocks themselves might offer fuel for life.

Why doesn’t this stuff make the news over what some celebrity did or politician said… (well I must admit I am just guessing since I don’t actually watch the news or read the mass media much – other than some science, investing or economics content). Oh well, at least you get to read the Curious Cat Science blog and find out about some of the cool stuff being learned every day.

Related: Life Far Beneath the OceanClouds Alive With BacteriaBacterium Living with High Level RadiationGiant Star Fish and More in Antarctica

Life Far Beneath the Ocean

Huge hidden biomass lives deep beneath the oceans

Recently, he and his colleagues examined samples of a mud core extracted from between 860 metres and 1626 metres beneath the sea floor off the coast of Newfoundland. They found simple organisms known as prokaryotes in every sample. Prokaryotes are organisms that often have just one cell. Their peculiarity is that, unlike any other form of life, their DNA is not neatly packed into a nucleus.

Where cells living so far beneath the sea floor could have come from remains a mystery. They may have been gradually buried in sediment as millions of years passed by, and adapted to the increasing temperatures and pressure, he says.

Another possibility is that they were sucked deep into the mud from the sea water above. Hydrothermal vents pulse hot water out of the seabed and into the ocean. This creates a vacuum in the sediment, which draws fresh sea water into the marine aquifer.

It is important to understand the way the cells got down there, because that has implications for their age. The cells are not very active and according to Parkes they have very few predators. “We find very few viruses, for example, down there,” he says. “At the surface, if you don’t divide you get eaten. But if there are no predators, the pressure to reproduce decreases and you can spend more energy on repairing your damaged molecules.”
Ancient life

This means it is conceivable – but unproven – that some of the cells are as old as the sediment. At 1.6 km beneath the sea, that’s 111 million years old. But in an underworld where cells divide excruciatingly slowly, if at all, age tends to lose its relevance, says Parkes.

More very cool stuff, this stuff is fun.

Related: Bacteria Frozen for 8 Million Years In Polar Ice ResuscitatedLife Untouched by the SunPlants, Unikonts, Excavates and SARs

NSF Graduate Research Fellows 2008

photo of Sarah Lukes

The National Science Foundation’s Graduate Research Fellowship Program aims to ensure the vitality of the human resource base of science and engineering in the United States and to reinforce its diversity. The program recognizes and supports outstanding graduate students in the relevant science, technology, engineering, and mathematics disciplines who are pursuing research-based master’s and doctoral degrees.

This year NSF awarded 913 fellowships: which come with a stipend of $30,000 and $10,500 cost of education allowance. On the ASEE Science and Engineering Fellowship blog, that I manage in my full time job with the American Society for Engineering Education (the Curious Cat Science and Engineering blog is my own and not related to ASEE), we highlight awardees including: Sarah Lukes mechanical engineering graduate working on her PhD at Montana State University; Ben Safdi, engineering physics and applied mathematics dual major at Colorado University – Boulder; Henry Deyoung, computer science major at Carnegie Mellon University, Jennifer Robinson, computer science major at North Carolina State; Lydia Thé, biology major at Swarthmore; and Julia Kamenetzky, physics major at Cornell College.

Fellows from previous years include: Sergey Brin, H. David Politzer and Eric Maskin.

Related: Proposal to Triple NSF GFRP Awards and the Size of the Awards by 33%Increasing American Fellowship Support for Scientists and EngineersScience and Engineering Scholarships and Fellowships Directory