Category Archives: Research

Clay Versus MRSA Superbug

“Healing clays” hold promise in fight against MRSA superbug infections and disease

Scientists from Arizona State University report that minerals from clay promise could provide inexpensive, highly-effective antimicrobials to fight methicillin-resistant Staphylococcus aureus (MRSA) infections that are moving out of health care settings and into the community.

Unlike conventional antibiotics routinely administered by injection or pills, the so-called “healing clays” could be applied as rub-on creams or ointments to keep MRSA infections from spreading

In their latest study, funded by the National Institutes of Health, Williams, Haydel and their colleagues collected more than 20 different clay samples from around the world to investigate their antibacterial activities… The researchers identified at least two clays from the United States that kill or significantly reduce the growth of these bacteria

Also listen to a podcast with the researchers, Lynda Williams and Shelly Haydel, that provides much more detail. The Science Studio podcasts from Arizona State University provides great science podcasts.

Related: Soil Could Shed Light on Antibiotic ResistanceEntirely New Antibiotic DevelopedScience Webcast DirectoryNSF Awards $50 Million for Collaborative Plant Biology Project (University of Arizona)

Scientists Witness the Birth of a Brain Cell

The Birth of a Brain Cell: Scientists Witness Neurogenesis

For the first time, researchers have developed a way to view stem cells in the brains of living animals, including humans—a finding that allows scientists to follow the process neurogenesis (the birth of neurons). The discovery comes just months after scientists confirmed that such cells are generated in adult as well as developing brains.

The key ingredient in this process is a substance unique to immature cells that is neither found in mature neurons nor in glia, the brain’s nonneuronal support cells. Maletic-Savatic and her colleagues collected samples of each of the three cell types from rat brains (stem cells from embryonic animals, the others from adults) and cultured the varieties separately in the lab. They were able to determine the chemical makeup of each variety – and isolate the compound unique to stem cells – with nuclear magnetic resonance (NMR) spectroscopy. (NMR helps to determine a molecule’s structure by measuring the magnetic properties of its subatomic particles.) Although the NMR could identify the biomarker, but not its makeup, Maletic-Savatic speculates it is a blend of fatty acids in a lipid (fat) or lipid protein.

Related: Feed your Newborn NeuronsBrain DevelopmentNew Neurons in Old BrainsNo Sleep, No New Brain Cells

Squid Materials Engineering

Scientists find that squid beak is both hard and soft

The sharp beak of the Humboldt squid is one of the hardest and stiffest organic materials known. Engineers, biologists, and marine scientists at the University of California, Santa Barbara, have joined forces to discover how the soft, gelatinous squid can operate its knife-like beak without tearing itself to pieces.

The key to the squid beak lies in the gradations of stiffness. The tip is extremely stiff, yet the base is 100 times more compliant, allowing it to blend with surrounding tissue. However, this only works when the base of the beak is wet. After it dries out, the base becomes similarly stiff as the already desiccated beak tip.

“You can imagine the problems you’d encounter if you attached a knife blade to a block of Jell-o and tried to use that blade for cutting. The blade would cut through the Jell-o at least as much as the targeted object. In the case of the squid beak, nature takes care of the problem by changing the beak composition progressively, rather than abruptly, so that its tip can pierce prey without harming the squid in the process. It’s a truly fascinating design!”

“If we could reproduce the property gradients that we find in squid beak, it would open new possibilities for joining materials,” explained Zok. “For example, if you graded an adhesive to make its properties match one material on one side and the other material on the other side, you could potentially form a much more robust bond,” he said. “This could really revolutionize the way engineers think about attaching materials together.”

Related: Deep-Sea Giant SquidSelf Healing PlasticSea Slug Photo Gallery

6 Inch Bat Plane

image of bat plane

A six-inch robotic spy plane modeled after a bat would gather data from sights, sounds and smells in urban combat zones and transmit information back to a soldier in real time.

That’s the Army’s concept, and it has awarded the University of Michigan College of Engineering a five-year, $10-million grant to help make it happen. The grant establishes the U-M Center for Objective Microelectronics and Biomimetic Advanced Technology, called COM-BAT for short. The grant includes an option to renew for an additional five years and $12.5 million.

U-M researchers will focus on the microelectronics. They will develop sensors, communication tools and batteries for this micro-aerial vehicle that’s been dubbed “the bat.” Engineers envision tiny cameras for stereo vision, an array of mini microphones that could home in on sounds from different directions, and small detectors for nuclear radiation and poisonous gases.

Low-power miniaturized radar and a very sensitive navigation system would help the bat find its way at night. Energy scavenging from solar, wind, vibration and other sources would recharge the bat’s lithium battery. The aircraft would use radio to send signals back to troops.

“These are all concepts, and many of them are the next generation of devices we have already developed. We’re trying to push the edge of our technologies to achieve functionality that was not possible before,” said Kamal Sarabandi, the COM-BAT director and a professor in the U-M Department of Electrical Engineering and Computer Science.

COM-BAT also involves the University of California at Berkeley and the University of New Mexico. It is one of four centers the Army launched as a collaborative effort among industry, academia and the Army Research Laboratory to work toward this vision of a small, robotic aircraft that could sense and communicate. Each of the four centers is charged with developing a different subsystem of the bat, a self-directed sensor inspired by the real thing.
Continue reading

Explaining the Missing Antimatter

Flipping particle could explain missing antimatter

It is one the biggest mysteries in physics – where did all the antimatter go? Now a team of physicists claims to have found the first ever hint of an answer in experimental data. The findings could signal a major crack in the standard model, the theoretical edifice that describes nature’s fundamental particles and forces.

In its early days, the cosmos was a cauldron of radiation and equal amounts of matter and antimatter. As it cooled, all the antimatter annihilated in collisions with matter – but for some reason the proportions ended up lopsided, leaving some of the matter intact.

Physicists think the explanation for this lies with the weak nuclear force, which differs from the other fundamental forces in that it does not act equally on matter and antimatter. This asymmetry, called CP violation, could have allowed the matter to survive to form the elements, stars and galaxies we see today.

“It is tantalisingly interesting at the moment,” says Val Gibson, an expert on B meson physics at the University of Cambridge. “If it is true, it is earth-shattering.” Jacobo Konigsberg, who leads the CDF collaboration, says that Tevatron researchers are “cautiously excited” about the analysis. He points out that more data needs to be analysed to rule out a statistical fluke, which has happened several times before in particle physics.

Related: First Evidence of New Physics in b <--> s Transitions (research paper)posts tagged physicsMatter to Anti-Matter 3 Trillion Times a SecondQuantum Mechanics Made Relatively Simple Podcasts

Drug Price Crisis

I don’t think the suggestion below really solves the drug price crisis. But I do think it is an example of an educational and research institution actually proposing sensible role for themselves. As I have said too many universities now act like they are for-profit drug or research companies: Funding Medical Research. For some background on drug prices read my post on the Curious Cat Management blog from 2005.

Solving the drug price crisis

The mounting U.S. drug price crisis can be contained and eventually reversed by separating drug discovery from drug marketing and by establishing a non-profit company to oversee funding for new medicines, according to two MIT experts on the pharmaceutical industry.

Following the utility model, Finkelstein and Temin propose establishing an independent, public, non-profit Drug Development Corporation (DDC), which would act as an intermediary between the two new industry segments — just as the electric grid acts as an intermediary between energy generators and distributors.

The DDC also would serve as a mechanism for prioritizing drugs for development, noted Finkelstein. “It is a two-level program in which scientists and other experts would recommend to decision-makers which kinds of drugs to fund the most. This would insulate development decisions from the political winds,” he said.

Book – Reasonable Rx: Solving the Drug Price Crisis by Stan Finkelstein and Peter Temin

Related: Lifestyle Drugs and RiskFrom Ghost Writing to Ghost Management in Medical JournalsUSA Spent $2.1 Trillion on Health Care in 2006Measuring the Health of NationsEconomic Strength Through Technology LeadershipUSA Paying More for Health Care

Deep-Sea Denizen Inspires New Polymers

Deep-Sea Denizen Inspires New Polymers

Stealing a trick from a tiny, pickle-shaped creature that dwells in the depths of the ocean, scientists have designed a new polymer that, when exposed to water, can instantly change its rigidity and strength.

Christoph Weder, an associate professor in the same department at Case, says he and Rowan thought of copying the sea cucumber’s adaptation more than five years ago. Working with marine biologists, they determined that the deep-sea animal accomplished its transformation thanks to fibers made of a protein known as collagen. The tightness of the connections between those fibers determines how stiff the cucumber’s skin is, and is controlled by the animal’s nervous system.

To get their polymer to do the same thing, the Case scientists used fibers found in another deep sea dweller, sea squirts, and also in cotton. When they mixed those fibers – known as cellulose nanofibers – with the rubbery polymer ethylene oxide–epichlorohydrin, they formed a stiff network, “almost glued to each other,” says Weder. Due to the nature of the bonds between the polymer and the fibers, however, water gets between the two substances, weakening the fibers’ adhesion. The material then becomes soft.

Related: 100 Innovations for 2006Reusable PaperHigh-efficiency Power Supplies

Laws of Physics May Need a Revision

Something seems wrong with the laws of physics

Einstein’s general theory of relativity swept Newton away by showing that gravity operates by distorting space itself.

Even Einstein, however, may not have got it right. Modern instruments have shown a departure from his predictions, too. In 1990 mission controllers at the Jet Propulsion Laboratory (JPL) in Pasadena, California, which operates America’s unmanned interplanetary space probes, noticed something odd happen to a Jupiter-bound craft, called Galileo. As it was flung around the Earth in what is known as a slingshot manoeuvre (designed to speed it on its way to the outer solar system), Galileo picked up more velocity than expected. Not much. Four millimetres a second, to be precise. But well within the range that can reliably be detected.

Altogether, John Anderson and his colleagues analysed six slingshots involving five different spacecraft. Their paper on the matter is about to be published in Physical Review Letters. Crucially for the idea that there really is a systematic flaw in the laws of physics as they are understood today, their data can be described by a simple formula. It is therefore possible to predict what should happen on future occasions.

That is what Dr Anderson and his team have now done. They have worked out the exact amount of extra speed that should be observed when they analyse the data from a slingshot last November, which involved a craft called Rosetta. If their prediction is correct, it will confirm that the phenomenon is real and that their formula is capturing its essence. Although the cause would remain unknown, a likely explanation is that something in the laws of gravity needs radical revision.

An interesting puzzle that illustrates how scientists attempt to confirm our understanding and real world results. And those efforts include uncertainty and confusion. Too often, I think, people think science is only about absolute truth and facts without any room for questions. We understand gravity well, but that does not mean we have no mysteries yet to solve about gravity.

Research paper: The Anomalous Trajectories of the Pioneer Spacecraft

Related: NASA Baffled by Unexplained Force Acting on Space ProbesMysterious Effect May Influence Spacecraft TrajectoriesEarth’s rotation may account for wayward spacecraftPioneer anomaly put to the testUnderstanding EvolutionScientists Search for Clues To Bee Mystery

Vaccine For Strep Infections

Engineered Protein Shows Potential as a Strep Vaccine

A University of California, San Diego-led research team has demonstrated that immunization with a stabilized version of a protein found on Streptococcus bacteria can provide protection against Strep infections, which afflict more than 600 million people each year and kill 400,000.

Group A Streptococcus (GAS). GAS causes a wide variety of human diseases including strep throat, rheumatic fever, and the life-threatening “flesh-eating” syndrome called necrotizing fasciitis. Studies were performed using M1 protein, which represents the version of M protein present on the most common disease-associated GAS strains.

“We created a modified version of M1 with a more stable structure, and found that it is just as effective at eliciting an immune reaction, but safer than the original version of M1, which has serious drawbacks to its use in a vaccine.”

Related: New and Old Ways to Make Flu VaccinesMRSA Vaccine Shows PromiseNew Approach Builds Better Proteins Inside a Computer

Honda Engineering

Inside Honda’s brain by Alex Taylor III

why is Honda playing with robots? Or, for that matter, airplanes? Honda is building a factory in North Carolina to manufacture the Hondajet, a sporty twin-engine runabout that carries six passengers. Or solar energy? Honda has established a subsidiary to make and market thin-film solar-power cells. Or soybeans? Honda grows soybeans in Ohio so that it can fill up cargo containers being shipped back to Japan. The list goes on. All this sounds irrelevant to a company that built some 24 million engines last year and stuffed them into everything from cars to weed whackers.

On fuel cells, Honda is literally years ahead of the competition. The FCX Clarity will go on sale in California this summer. It is powered by a fuel cell that uses no gasoline and emits only water vapor. Though mass production is at least a decade away, the Clarity is no mere test mule. Elegant and efficient, its hydrogen-powered fuel-cell stack is small enough to fit in the center tunnel – a significant improvement over other, bulkier power packs – and robust enough for a range of 270 miles.

The wellspring of Honda’s creative juices is Honda R&D, a wholly owned subsidiary of Honda Motor. Based in Saitama, west of Tokyo, R&D engineers create every product that Honda makes – from lawn mowers to motorcycles and automobiles – and pursue projects like Asimo and Hondajet on the side. Defiantly individualistic, R&D insists on devising its own solutions and shuns outside alliances. On paper it reports to Honda Motor, but it is powerful enough to have produced every CEO since the company was founded in 1948.

The engineer in Fukui [Honda’s president and CEO] cannot help but be intrigued by what his former colleagues are up to, and his office is only a few steps away from Kato’s. But even with the CEO just down the hall, says Kato, “We want to look down the road. We do not want to be influenced by the business.”

Honda allows its engineers wide latitude in interpreting its corporate mission. “We’ve been known to study the movement of cockroaches and bumblebees to better understand mobility,” says Frank Paluch, a vice president of automotive design. Honda R&D gets about 5% of Honda’s annual revenues. Most of the money goes to vehicle development, not cockroach studies

mistakes like the Insight are also the exception. R&D has provided Honda with a long list of engineering firsts that consumers liked, including the motorcycle airbag, the low-polluting four-stroke marine engine, and ultralow-emission cars.

Related: S&P 500 CEOs – More Engineering GraduatesGoogle Investing Huge Sums in Renewable Energy and is HiringAsimo Robot, Running and Climbing StairsApplied ResearchGoogle: Ten Golden Rules