Category Archives: Research

Nanotechnology Investment as Strategic National Economic Policy

We have quite a few posts on the intersection of science, research, economic, investment… such as: Diplomacy and Science Research, Science and Engineering in Global Economics and Engineering the Future Economy. Here is another example, from the Wired Science BlogBeating the United States in the Race for Nanotechnology:

When the United States began the National Nanotechnology Initiative, it became clear to a number of small countries including Singapore, Taiwan, and Israel that it was time to invest heavily in similar frontier areas of science. With a level of decisiveness and determination comparable to the efforts of the United States after the launch of Sputnik, Singapore quickly became a global niche player in nanotechnology.

It’s fascinating to hear a high ranking government official who is so incredibly technology savvy and focused on economic development through investment in science. It makes the current climate in the U.S. look really bad, but on the other hand the other countries followed our lead. Since then, they have sort of outdone us at our own game.

Singapore is doing the right things to invest in a science and engineering economy. 10 minute webcast of Foreign Minister George Yeo at the 3rd International Conference on Bioengineering and Nanotechnology:

Related: Singapore woos top scientists with new labsSingapore Research FellowshipSingapore Supporting Science ResearchersNanotechnology posts

Discover the Supercollider

The Biggest Thing in Physics

It has taken over 20 years, $8 billion, and the combined efforts of more than 60 countries to create this extraordinary particle smasher, the Large Hadron Collider, or LHC, built and operated by CERN, the European physics consortium.

When the machine is switched on for the first time at the end of this year, particles will make a lap around the LHC in less than one ten-thousandth of a second. Keeping those particles on track requires serious bending power from more than 1,200 superconducting magnets, each of which weighs several tons apiece. Each magnet must be kept at –456 degrees Fahrenheit—colder than the void between galaxies—requiring CERN to build the world’s biggest cryogenic system to handle the 185,000 gallons of liquid helium that will be used to chill the magnets.

Yet another interesting article on the LHC. See previous posts: New Yorker on CERN’s Large Hadron ColliderCERN Pressure Test FailureCERN Prepares for LHC Operations

Best Research University Rankings – 2007

There are several rankings of universities. They can be interesting but also have obvious limitations. I find Shanghai’s Jiao Tong University’s the most interesting (especially the international nature of it). Their real focus seems to be in providing a way for China to get a feel for how they are progressing toward developing world class universities (interesting slide presentation on their efforts). The methodology values publications and faculty awards and is provides a better ranking of research (rather than teaching). Results from the 2007 rankings of Top 500 Universities worldwide showing country representation of the top schools:

location Top 101 % of World
Population
% of World GDP % of top 500
USA 54     4.6%   27.4%  32.7%
United Kingdom 11  0.9  4.9 8.3
Germany   6  1.3  6.0 8.1
Japan   6  2.0  9.0 6.3
Canada   4  0.5  2.6 4.3
France   4  0.9  4.6 4.3
Sweden   4  0.1  0.8 2.2
Switzerland   3  0.1  0.8 1.6
Australia   2  0.3  1.6 3.3
Netherlands   2  0.3  1.4 2.4
Israel  1  0.1  0.3 1.4
Finland   1  0.1  0.4 1.0
Norway   1  0.1  0.6 0.8
Denmark   1  0.1  0.6 0.8
Russia   1  2.2  2.0 0.4
China  20.1  5.5 2.8
India  17.0  1.9 0.4

China has 1 ranked in the 151-202 range as do Taiwan, Korea and Brazil. Singapore has one in the 102-151 range. The other country without any in the top 101 with representation in the next 101 is Italy with 3 schools in the 102-151 range and 2 in the 152-202 range. India has 2 in the 305-401 range.

Top 10 schools (same schools as last year, Cambridge moved from 2nd to 4th):

  • Harvard University
  • Stanford University
  • University of California at Berkeley
  • Cambridge University
  • Massachusetts Institute of Technology(MIT)
  • California Institute of Technology
  • Columbia University
  • Princeton University
  • University Chicago
  • Oxford University

University of Wisconsin – Madison is 17th 🙂 My father taught there while I grew up.
Continue reading

Galactic Dust with the Ability to Reproduce?

Dust ‘comes alive’ in space:

An international panel from the Russian Academy of Sciences, the Max Planck institute in Germany and the University of Sydney found that galactic dust could form spontaneously into helixes and double helixes and that the inorganic creations had memory and the power to reproduce themselves.

The new research, to be published this week in the New Journal of Physics, found nonorganic dust, when held in the form of plasma in zero gravity, formed the helical structures found in DNA. The particles are held together by electromagnetic forces that the scientists say could contain a code comparable to the genetic information held in organic matter. It appeared that this code could be transferred to the next generation.

Professor Greg Morfill, of the Max Planck institute of extra-terrestrial physics, said: “Going by our current narrow definitions of what life is, it qualifies. “The question now is to see if it can evolve to become intelligent. It’s a little bit like science fiction at the moment. The potential level of complexity we are looking at is of an amoeba or a plant.”

“I do not believe that the systems we are talking about are life as we know it. We need to define the criteria for what we think of as life much more clearly.”

Interesting, though I don’t really understand what they mean by memory and reproduction in this context.

Related: Cosmic ‘DNA’: Double Helix Spotted in Space – “Magnetic forces at the center of the galaxy have twisted a nebula into the shape of DNA, a new study reveals. The double helix shape is commonly seen inside living organisms, but this is the first time it has been observed in the cosmos.”

Aerogels – Cool Substances

First Prize for Weird

A solid that’s up to 99 percent gas, it is rigid to a light touch, soft to a stronger one, and shatters like glass if it’s put under too much pressure too quickly; it’s one of the most enigmatic of materials, as well as one of the most versatile.

It can withstand the heat of a direct flame; engineers use it for insulation on oil rigs and for warmth in the insoles of hiking boots worn in the coldest temperatures on Earth. NASA uses it to trap comet dust blowing through the universe at six kilometers per second.

Nicknamed “frozen smoke” after its ethereal appearance, aerogel is neither frozen nor smoke. It’s also surprisingly low tech—it’s been known since 1931

Together, these ingredients can form a structure that chemically resembles glass but is so full of whorls and crevices that one cubic centimeter has a total surface area equal to a football field’s. The lightest-weight solid in the world, aerogel weighs 1.2 milligrams per cubic centimeter—barely more than the air molecules around it. In fact, the material itself is almost entirely made of air, like a sponge that consists mostly of holes. Don’t let its lightness fool you: it’s strong. NASA photos show two grams of the material easily supporting a 2.5-kilogram brick.

And because the aerogels pack an enormous surface area into a tiny volume, small pieces can clear out many liters of water. Kanatzidis’s aerogels sopped up so much mercury that they diluted a solution of 645 parts per million down to 0.04 parts per million. They had similar effects on lead and cadmium, two other pollutants.

The new aerogels aren’t ready for widespread use: they’re made with platinum, so they’re extraordinarily expensive. But if other metals can be used to make them instead (Kanatzidis says they can), chunks of them could be dropped into polluted water, removing contaminants.

Cool. NASA Aerogel FAQ

Authors of Scientific Articles by Country

The United States National Science Foundation published – Changing U.S. Output of Scientific Articles: 1988–2003.

In an unexpected development in the early 1990s, the absolute number of science and engineering (S&E) articles published by U.S.-based authors in the world’s major peer-reviewed journals plateaued.

The unprecedented plateau in the number of U.S. S&E articles should not be confused with a decades-long and familiar decline in the U.S. share of the world’s S&E articles. As other states built up their S&E capabilities, the U.S. share of the world’s articles in natural sciences and engineering dropped from 38% in 1973 to 28% in 2003. This decline in share is not surprising, nor has it been viewed as a cause for concern. By many measures, including articles published in peer-reviewed journals, the United States has been the world’s leading scientific nation for decades and remains the world’s leading scientific nation.

Although the U.S. share of the world’s influential articles dropped substantially, the United States remained dominant in this area. At the end of the period studied, U.S. institutions were at least partially responsible for half of the world’s influential articles; no other major publishing center approached this figure. Moreover, compared with other major publishing centers, a considerably higher percentage of total U.S. output was classified as influential.

NSF includes a great deal of interesting data along with commentary. One compelling area is that of the location of authors of the top 1% of the most cited papers. The USA leads with 64.6% in 1992 and 56.6% in 2003. European Union-15 (15 countries for this measure) 23.3% to 27.7% (interesting, not what I would have predicted – which would have been a decline, though a small one). Japan 4.2% to 5.3%. East Asia – 4 (China, Singapore, South Korea, and Taiwan) from .1 to 1.1% (and rising rapidly – .5% in 2001 to .8% in 2002) – interesting but not so surprising, basically what I would expect – rapid gains. All other countries: 7.8% in 1992 and 9.3% in 2003. I predict these figures will have to break out India sometime in the next 10 years – I wish they did now though I expect it is a fairly low figure. China will also be reported separately, I believe.

The NSF data includes all sorts of great stuff. For the same top 1% of cited articles by topic East Asia – 4 in Engineering/Technology: 1992 .9% – 2003 7.2% in Social Sciences 0.0% to .6% in Mathematics 1.3% to 5.6%. In Engineering/Technology the USA dropped from 63.3% to 45.4%.

This is more data supporting what I have said before Science Excellence and Economic Benefits:
Continue reading

Google: Patent System in Crisis

Google’s patents chief believes the US patent system is “in crisis” and I agree, see related posts below. Google: Kill all the patent trolls

There are too many businesses, she added, who do little more than use patents as a means of making money. Such businesses, often referred to as trolls in patent law, have proved to be a serious minefield for tech companies over the last few years. Lee highlighted the tribulations of Research in Motion, maker of the BlackBerry handheld, which settled a patent lawsuit for $612m last May.

Speaking alongside Lee, Apple’s chief patent counsel, Chip Lutton, wouldn’t go quite so far as his Google counterpart. He said the US patent system was “not broken” and that it was “not in crisis,” calling it “the best in the world”. But he acknowledged that there was a “huge bubble” of patent assertions that needs to be scaled back. “The question with this bubble market, as with any bubble market, is ‘Can we solve it without a crisis arising?'” he said.

Lutton believes that the key to fixing the country’s patent problems lies with the courts, not the patent office. “Most patents issued are never litigated and never licensed,” he said. “We need to focus on fixing the litigation system. That’s most relevant.”

Related: Software Patents – Bad IdeaPatenting Life, a Bad IdeaThe Effects of Patenting on ScienceIntellectual Property Rights and InnovationAlwaysOn Stanford Summit: lawyers for Google, IBM, and Apple ponder the patent system

Contradictory Medical Studies

I have written before about false research findings. This is an important topic – we need to remember that the interpritation of one study (or many studies) in not necessarily conclusive. Another article – When Medical Studies Collide:

Two years ago, the headlines blared that echinacea was a bust. Millions of people who believed the best-selling herbal remedy was warding off colds were probably deluding themselves, according to The New England Journal of Medicine. Now echinacea is back in the news. This time, it works! So says a study in The Lancet Infectious Diseases.

How could two studies come to such different conclusions—especially when there have been no new trials of the herb? While the New England Journal reported on one clinical trial, authors of the latest report combined data from previous studies, a controversial approach called a meta-analysis. Its conclusion is dramatically different—not just from that of the New England Journal paper, but also from a review last year of the same studies.

The problem is, the world of medical and health research is messier than most people realize. Black-and-white answers are rare, even when it comes to a single drug trial.

Just remember those last two sentences. Very simple. And most people would agree if you showed them those two sentences and asked if they agreed. But then they see a headline and away they go… Just force yourself to repeat that idea every time you see a health report. Don’t believe the headline without strong support.

An interesting tidbit from the article. The coneflower is the source of echinacea. I tried to find photos that I am pretty sure I have on my hard drive of the flowers in my back yard, but I couldn’t.

Related: Correlation is Not CausationAnother Paper Questions Scientific Paper Accuracy

Research on Why Healthy Living Leads to Longer Life

New Clue into How Diet and Exercise Enhance Longevity

In their experiments, the researchers sought to understand the role of the insulin-like signaling pathway in extending lifespan. This pathway governs growth and metabolic processes in cells throughout the body. The pathway is activated when insulin and insulin-like growth factor-1 switch on proteins inside the cell called insulin receptor substrates (Irs).

Other researchers had shown that reducing the activity of the pathway in roundworms and fruitflies extends lifespan. Despite those tantalizing clues, White said, “The idea that insulin reduces lifespan is difficult to reconcile with decades of clinical practice and scientific investigation to treat diabetes.” “In fact, based on our work on one of the insulin receptor substrates, Irs2, in liver and pancreatic beta cells, we thought more Irs2 would be good for you,” said White. “It reduces the amount of insulin needed in the body to control blood glucose, and it promotes growth, survival and insulin secretion from pancreatic beta cells.

“Diet, exercise and lower weight keep your peripheral tissues sensitive to insulin. That reduces the amount and duration of insulin secretion needed to keep your glucose under control when you eat. Therefore, the brain is exposed to less insulin. Since insulin turns on Irs2 in the brain, that means lower Irs2 activity, which we’ve linked to longer lifespan in the mouse.”

Related: Eat food. Not too much. Mostly plants.Regular Exercise Reduces FatigueDiabetes Breakthrough$500 Million Over the Next 5 Years to Help Reduce Childhood Obesity in USA

Time

Newsflash: Time May Not Exist

Planck time—the smallest unit of time that has any physical meaning—is 10-43 second, less than a trillionth of a trillionth of an attosecond. Beyond that? Tempus incognito. At least for now. Efforts to understand time below the Planck scale have led to an exceedingly strange juncture in physics. The problem, in brief, is that time may not exist at the most fundamental level of physical reality.

Einstein’s theories also opened a rift in physics because the rules of general relativity (which describe gravity and the large-scale structure of the cosmos) seem incompatible with those of quantum physics (which govern the realm of the tiny). Some four decades ago, the renowned physicist John Wheeler, then at Princeton, and the late Bryce DeWitt, then at the University of North Carolina, developed an extraordinary equation that provides a possible framework for unifying relativity and quantum mechanics. But the Wheeler-­DeWitt equation has always been controversial, in part because it adds yet another, even more baffling twist to our understanding of time.

“One finds that time just disappears from the Wheeler-DeWitt equation,” says Carlo Rovelli, a physicist at the University of the Mediterranean in Marseille, France. “It is an issue that many theorists have puzzled about. It may be that the best way to think about quantum reality is to give up the notion of time—that the fundamental description of the universe must be timeless.”

Interesting. As usual, quantum actions seem bizarre. Related: Quantum Mechanics Made Relatively Simple PodcastsPhysicists Observe New Property of MatterParticles and WavesQuantum Theory Fails Reality ChecksPhysics Concepts in 60 Seconds