Category Archives: Robots

Robot and robotics news and information – keep up with the latest engineering breakthroughs

Robot Nurse

Robot nurse under development at Sask. university

In two years, a robot nurse could be trolling hospital hallways, handing out pills or visiting quarantined patients. At least that according to its creator, Reza Fotouhi, who says his robot could well be the answer to worker shortages in the health-care, mining and agriculture fields.

With a video camera on the front end, he could see what was ahead of the machine. The $215,000 project is funded by the Canada Foundation for Innovation and the government of Saskatchewan.

Related: PowerBotRobot Navigation Using PredictionCarnegie Mellon Robotics AcademyArticles on Improving the Health Care SystemHealth Care Now 16% of GDP in USA

Robots 2007

The Year in Robots:

Other robots helped us learn about ourselves. In November, University of California, San Diego, researchers reported in Proceedings of the National Academy of Sciences USA that “current robot technology is surprisingly close to achieving autonomous bonding and socialization with human toddlers for significant periods of time.” QRIO, another two-foot- (61-centimeter-) humanoid was placed in UC San Diego’s Early Childhood Education Center and programmed to wave, dance, sit and stand, among other functions. Children aged 18 to 24 months quickly warmed to the machine and began to treat it more like a peer than an object.

And some of our posts on robots from 2007: Robo-One Grand Championship in TokyoHumanoid RobotNSF Robotics ReportCarnegie Mellon Wins Urban Robot Auto Race

Rubick’s Cube Solving Lego Mindstorms Robot

Lego Mindstorms have really really provided some great tools for home robot engineering. JP Brown has several examples on his web site including this CubeSolver:

The longest part of the this project involved writing the color-recognition software. I downloaded the Logitech Quick Cam SDK from the Logitech Developer’s site (the LEGO Vision Cam is a repackaged Logitech Quick Cam) and used VB5 to write a fairly decent program (click the Code link for source). The color recognition is fairly robust (about one error every two cubes when well-calibrated), but not perfect, so I incorporated a feature that requires you to confirm that each face has been correctly scanned (and, optionally, allows you to correct the input manually) before it scans the next face.

My early attempts at building a cube solver were all stymied by grips that slipped. The worm-56t gave enough torque to turn, but the fingers couldn’t hang on and the grip was simply pried apart as the grabber rotated around the stationary cube face. I thought about changing the device’s name to ButterFingers.

I rebuilt the left and right grabbers six times (and the bottom grabber four times) trying elastic bands, Technic shocks, and pneumatics, before I came up with an adequate grip mechanism. In the present version, an axle runs from a motor through the center of the large Technic turntable to a worm screw. The worm screw turns two 24t gears mounted either side of the worm inside the body of the grabber.

Other home engineering favorites: Awesome Cat CamWindmill for ElectricityLego Autopilot First Flight

Robot Fly

Tinker, Tailor, Robot, Fly

Designing an automated fly implied having the ability to make lightweight, miniature working parts, a process that Wood says took up the bulk of his doctoral study, because of the lack of any previous research on which to draw. “For years, the thrust of our work was ‘How do we do this?'” says Wood. “There was no existing fabrication paradigm, given the scale we were operating on, the speed we wanted to operate with, and things like cost, turnaround, and robustness.” His research group developed and fabricated a laser carving system that could meticulously cut, shape, and bend sheets of carbon fiber and polymer – both strong but lightweight materials – into the necessary microparts.

And how to power those wings to beat 120 times per second? To keep this 60-milligram robot (the weight of a few grains of rice) with a 3-centimeter wingspan to a minimal size and weight, Wood says, you can’t simply use a shrunken version of the heavy DC (direct current) motors used in most robots. So he and his team settled on a simple actuator: in this case, a layered composite that bends when electricity is applied, thereby powering a micro-scale gearbox hooked up to the wings. Wood says the actuator works even better than its biological inspiration. The power density – a measure of power output as a function of mass – of a fly’s wing muscles is around 80 watts per kilogram; Wood’s wing design produces more than 400 watts per kilogram.

The first takeoff occurred late one evening last March, as Wood worked alone in his office, his colleagues gone for the evening. As the fly rose, Wood jumped up in celebration, quickly verified that his camera had captured the flight, and let out a sigh of relief.

Related: Robo Insect FlightMini Helicopter Masters Insect Navigation TrickMagnificent Flying Machine

LEGO Project Inspires Students

LEGO project inspires students

After school every Thursday at New Haven Elementary more than 60 students gather to discuss energy sources, plan building models, and learn more about science and engineering. The group, made up of first-, second- and third-graders, is participating in Junior First LEGO League (JFLL). JFLL is a worldwide organization that introduces children to concepts of teamwork and basic design skills.

Karen Cheser, elementary director of teaching and learning for Boone County Schools, brought the program to the district. It relies on 10 volunteer coaches including school teachers, a robotics engineer, parents, and business owners to guide students.

“Participation is very active because of the hands-on component of the work,” Fortner said. “Students see it as a club, but we look at it as an extension of the school day, because it teaches fundamental science concepts, it encourages teamwork, and builds social skills.”

The First Lego League web site provides information on local programs all over the world.

Related: More Lego LearningBuilding minds by building robotsLego Autopilot First Flight

Carnegie Mellon Robotics Academy

The Carnegie Mellon Robotics Academy is designed to use robotics to excite children about science and technology and to help create a more technologically literate society. This seems like quite a nice idea to me.

When students design and build robots they study math, science, engineering, and physics. Robotics Education is the “Premier Integrator” in education today. Students are immersed in geometry, trigonometry, electronics, programming, computer control and mechanics while using industry standard software and hardware. They learn to compromise when working in teams. They learn the importance of time management and resource allocation. They are introduced to the concept of systems and systems analysis.

Currently there are over 80 companies in the Southwestern Pennsylvania region that design, sell, or service robots. Carnegie Mellon University, the governing body of the NREC, has a world-renowned reputation for robotics. NASA, one of the funders of the consortium, has an unparalleled commitment to education. Pittsburgh and The National Robotics Engineering Consortium have all the components necessary to become the world leader in Robotics Education.

Why is it important? Most of the technologies that we depend on daily were developed in the last ten years. The only constant is change, and change is exponential in the digitally driven world in which we find ourselves. If you believe as we do that it is the scientists and technologists that will have the greatest impact on the quality of your life in the future, then you will find the following statistics alarming.

Related: Tour the Carnegie Mellon Robotics LabLearning with Robotic LegosRobots Wrestling, Students LearningCMU Professor Gives His Last Lesson on LifeBuilding minds by building robotsFun Primary Science and Engineering Learning

Robot Water Striders

Scientists crack how insect bounces on water:

Walking on water may seem like a miracle to humans. But it is a humdrum achievement for the little water strider, which is able to bounce up and down on water too. Scientists have already solved the mystery of how their six slender, stilt-like legs evenly distribute their scant body weight over a relatively large area so that the “skin” formed by the surface tension of the water supports them, so four millimetre across dimples form under each foot as they skim about.

But scientists remained puzzled by how they could jump up and down upon the surface of water. Now a team in South Korea is about to report that it has at last explained the water strider’s baffling ability to leap onto water without sinking, in a forthcoming issue of the journal Langmuir, an achievement that could help further develop robots that can move about on lakes and reservoirs to monitor water quality, spy or explore.

Related: Robo Insect FlightWorld’s Lightest Flying RobotUnderwater Robots CollaborateRoachbot: Cockroach Controlled Robot

Robo-One Grand Championship in Tokyo

Two-legged robots battle for supremacy at the the Robo-One Convention in Tokyo. Very fun video. The robots has to be built from scratch by amateurs. Also see ROBO-ONE: Grand Championship Competition @ IREX (with full video of final match).

Related: LEGO Sumo Robotic ChampionshipNorthwest FIRST Robotics CompetitionMaking Robots from TrashRobot DreamsToyota Robots

Robot Boats Hunt Pirates

Robot Boats Hunt High-Tech Pirates on the High-Speed Seas

The International Maritime Bureau is tracking a 14-percent increase in worldwide pirate attacks this year. And although modern-day pirates enjoy collecting their fare share of booty—they have a soft spot for communications gear—they’re just as likely to ransom an entire ship. In one particularly sobering case, hijackers killed one crew member of a Taiwan-owned vessel each month until their demands were met.

For years now, law enforcement agencies across the high seas have proposed robotic boats, or unmanned surface vessels (USVs), as a way to help deal with 21st-Century techno Black Beards. The Navy has tested at least two small, armed USV demonstrators designed to patrol harbors and defend vessels. And both the Navy and the Coast Guard have expressed interest in the Protector, a 30-ft.-long USV built by BAE Systems, Lockheed Martin and Israeli defense firm RAFAEL.

The Protector, which comes mounted with a 7.62mm machine gun, wasn’t originally intended for anti-piracy operations. But according to BAE Systems spokesperson Stephanie Moncada, the robot could easily fill that role.

Related: International Autonomous Underwater Vehicle CompetitionAutonomous Flying Vehicles