Category Archives: Science

What Dogs Reveal About Evolution

cover of the Greatest Show on Earth by Richard Dawkins

From, The Greatest Show on Earth: The Evidence for Evolution by Richard Dawkins

All breeds of dogs are domesticated wolves: not jackals, not coyotes and not foxes.

Coppinger points out that when domestic animals break free and go feral for many generations, they usually revert to something close to their wild ancestor. We might expect feral dogs, therefore, to become rather wolf-like. But this doesn’t happen. Instead, dogs left to go feral seem to become the ubiquitous “village dogs” – “pye-dogs” – that hang around human settlements all over the Third World. This encourages Coppinger’s belief that the dogs on which human breeders finally went to work were wolves no longer. They had already changed themselves into dogs: village dogs, pye-dogs, perhaps dingos.

Real wolves are pack hunters. Village dogs are scavengers that frequent middens and rubbish dumps.

Belyaev and his colleagues (and successors, for the experimental programme continued after his death) subjected fox cubs to standardised tests in which an experimenter would offer a cub food by hand, while trying to stroke or fondle it. The cubs were classified into three classes. Class III cubs were those that fled from or bit the person. Class II cubs would allow themselves to be handled, but showed no positive responsiveness to the experimenters. Class I cubs, the tamest of all, positively approached the handlers, wagging their tails and whining. When the cubs grew up, the experimenters systematically bred only from this tamest class.

After a mere six generations of this selective breeding for tameness, the foxes had changed so much that the experimenters felt obliged to name a new category, the “domesticated elite” class, which were “eager to establish human contact, whimpering to attract attention and sniffing and licking experimenters like dogs.” At the beginning of the experiment, none of the foxes were in the elite class. After ten generations of breeding for tameness, 18 per cent were “elite”; after 20 generations, 35 per cent; and after 30 to 35 generations, “domesticated elite” individuals constituted between 70 and 80 per cent of the experimental population.

The tame foxes not only behaved like domestic dogs, they looked like them. They lost their foxy pelage and became piebald black and white, like Welsh collies. Their foxy prick ears were replaced by doggy floppy ears. Their tails turned up at the end like a dog’s, rather than down like a fox’s brush. The females came on heat every six months like a bitch, instead of every year like a vixen. According to Belyaev, they even sounded like dogs.

These dog-like features were side- effects. Belyaev and his team did not deliberately breed for them, only for tameness.

The famous domesticated silver fox experiment offers interesting insight into animal traits and evolution.

Related: The Selfish Gene by Richard Dawkins – The Evolution of House CatsDarwin’s Beetles Still Producing SurprisesBackyard Wildlife: Fox

Microbes Flourish In Healthy People

Bugs Inside: What Happens When the Microbes That Keep Us Healthy Disappear? by Katherine Harmon

The human body has some 10 trillion human cells—but 10 times that number of microbial cells. So what happens when such an important part of our bodies goes missing?

“Someone who didn’t have their microbes, they’d be naked,” says Martin Blaser, a professor of microbiology and chair of the Department of Medicine at New York University Langone Medical Center in New York City.

Even though it is such an apparently integral and ancient aspect of human health, scientists are still grasping for better ways to study human microbiota—before it changes beyond historical recognition. Borrowing models from outside of medicine has helped many in the field gain a better understanding of this living world within us. “The important concept is about extinctions,” Blaser says. “It’s ecology.”

The first step in understanding these systems is simply taking stock of what archaea, bacteria, fungi, protozoa and viruses are present in healthy individuals. This massive micro undertaking has been ongoing since 2007 through the National Institutes of Health’s (NIH) Human Microbiome Project. So far it has turned up some surprisingly rich data, including genetic sequencing for some 205 of the different genera that live on healthy human skin.

Despite the flood of new data, Foxman laughs when asked if there is any hope for a final report from the Human Microbiome Project any time soon. “This is the very, very beginning,” she says, comparing this project with the NIH’s Human Genome Project, which jump-started a barrage of new genetic research. “There are basic, basic questions that we don’t know the answers to,” she says, such as how different microbiota are between random individuals or family members; how much microbiota change over time; or how related the microbiota are to each other on or inside a person’s body.

Related: Microcosm by Carl ZimmerTracking the Ecosystem Within UsAlligator Blood Provides Strong Resistance to Bacteria and VirusesBeneficial Bacteria

Presidential Science Teaching and Mentoring Awards

Related: President Obama Speaks on Getting Students Excited About Science and EngineeringPresidential Awards for Excellence in Science, Mathematics and Engineering MentoringFund Teacher’s Science Projects$12.5 Million from NSF For Educating High School Engineering Teachers

Remarks by President Obama on the “Educate to Innovate” Campaign and Science Teaching and Mentoring Awards, January 6, 2010

To all the teachers who are here, as President, I am just thrilled to welcome you, teachers and mentors, to the White House, because I believe so strongly in the work that you do. And as I mentioned to some of you, because I’ve got two girls upstairs with math tests coming up, I figure that a little extra help from the best of the best couldn’t hurt. So you’re going to have assignments after this. (Laughter.) These awards were not free. (Laughter.)

photo of President Obama with science teachers at the White HousePresident Barack Obama with Presidential Awards for Excellence in Mathematics and Science Teaching winners in the State Dining of the White House January 6, 2010. (Official White House photo by Chuck Kennedy)

We are here today to honor teachers and mentors like Barb who are upholding their responsibility not just to the young people who they teach but to our country by inspiring and educating a new generation in math and science. But we’re also here because this responsibility can’t be theirs alone. All of us have a role to play in building an education system that is worthy of our children and ready to help us seize the opportunities and meet the challenges of the 21st century.

Whether it’s improving our health or harnessing clean energy, protecting our security or succeeding in the global economy, our future depends on reaffirming America’s role as the world’s engine of scientific discovery and technological innovation. And that leadership tomorrow depends on how we educate our students today, especially in math, science, technology, and engineering.

But despite the importance of education in these subjects, we have to admit we are right now being outpaced by our competitors. One assessment shows American 15-year-olds now ranked 21st in science and 25th in math when compared to their peers around the world. Think about that — 21st and 25th. That’s not acceptable. And year after year the gap between the number of teachers we have and the number of teachers we need in these areas is widening. The shortfall is projected to climb past a quarter of a million teachers in the next five years — and that gap is most pronounced in predominately poor and minority schools.

And meanwhile, other nations are stepping up — a fact that was plain to see when I visited Asia at the end of last year. The President of South Korea and I were having lunch, and I asked him, what’s the biggest education challenge that you have? He told me his biggest challenge in education wasn’t budget holes, it wasn’t crumbling schools — it was that the parents were too demanding. (Laughter.) He’s had to import thousands of foreign teachers because parents insisted on English language training in elementary school. The mayor of Shanghai, China — a city of over 20 million people — told me that even in such a large city, they had no problem recruiting teachers in whatever subject, but particularly math and science, because teaching is revered and the pay scales are comparable to professions like doctors.
Continue reading

Fungus-gardening Ant Species Has Given Up Sex Completely

The complete asexuality of a widespread fungus-gardening ant, the only ant species in the world known to have dispensed with males entirely, has been confirmed by a team of Texas and Brazilian researchers.

photo of christian rabeling excavating ants in BrazilGraduate student Christian Rabeling excavating fungus-farming ant nests in Brasilia.

Most social insects—the wasps, ants and bees—are relatively used to daily life without males. Their colonies are well run by swarms of sterile sisters lorded over by an egg-laying queen. But, eventually, all social insect species have the ability to produce a crop of males who go forth in the world to fertilize new queens and propagate.

Queens of the ant Mycocepurus smithii reproduce without fertilization and males appear to be completely absent, report Christian Rabeling, Ulrich Mueller and their Brazilian colleagues in open access journal PLoS ONE this week.

“Animals that are completely asexual are relatively rare, which makes this is a very interesting ant,” says Rabeling, an ecology, evolution and behavior graduate student at The University of Texas at Austin. “Asexual species don’t mix their genes through recombination, so you expect harmful mutations to accumulate over time and for the species to go extinct more quickly than others. They don’t generally persist for very long over evolutionary time.”

Previous studies of the ants from Puerto Rico and Panama have pointed toward the ants being completely asexual. One study in particular, by Mueller and former graduate student Anna Himler (now at Arizona State University), showed that the ants reproduced in the lab without males, and that no amount of stress induced the production of males.

Scientists believed that specimens of male ants previously collected in Brazil in the 1960s could be males of M. smithii. If males of the species existed, it would suggest that—at least from time to time—the ants reproduce sexually.

Rabeling analyzed the males in question and discovered that they belonged to another closely related (sexually reproducing) species of fungus-farmer, Mycocepurus obsoletus, thus establishing that no males are known to exist for M. smithii. He also dissected reproducing M. smithii queens from Brazil and found that their sperm storage organs were empty.

Taken together with the previous studies of the ants, Rabeling and his colleagues have concluded that the species is very likely to be totally asexual across its entire range, from Northern Mexico through Central America to Brazil, including some Caribbean islands.

As for the age of the species, the scientists estimate the ants could have first evolved within the last one to two million years, a very young species given that the fungus-farming ants evolved 50 million years ago.

Rabeling says he is using genetic markers to study the evolution and systematics of the fungus-gardening ants and this will help determine the date of the appearance and genetic mechanism of asexual reproduction more precisely in the near future.

Full press release

Related: Bdelloid Rotifers Abandoned Sex 100 Million Years AgoAmazonian Ant Species is All Female, Reproduces By CloningFemale Sharks Can Reproduce AsexualityAmazon Molly Fish are All Female

Printing Bone, Muscle and More

A Pittsburgh-based research team has created and used an innovative ink-jet system to print “bio-ink” patterns that direct muscle-derived stem cells from adult mice to differentiate into both muscle cells and bone cells.

The custom-built ink-jet printer, developed at Carnegie Mellon’s Robotics Institute, can deposit and immobilize growth factors in virtually any design, pattern or concentration, laying down patterns on native extracellular matrix-coated slides (such as fibrin). These slides are then placed in culture dishes and topped with muscle-derived stem cells (MDSCs). Based on pattern, dose or factor printed by the ink-jet, the MDSCs can be directed to differentiate down various cell-fate differentiation pathways (e.g. bone- or muscle-like).

“This system provides an unprecedented means to engineer replacement tissues derived from muscle stem cells,” said Johnny Huard, professor of orthopedic surgery at the University of Pittsburgh School of Medicine and director of the Stem Cell Research Center at Children’s Hospital of UPMC. Huard has long-standing research findings that show how muscle-derived stem cells (MDSCs) from mice can repair muscle in a model for Duchenne Muscular Dystrophy, improve cardiac function following heart failure, and heal large bone and articular cartilage defects.

Weiss and Campbell, along with graduate student Eric Miller, previously demonstrated the use of ink-jet printing to pattern growth factor “bio-inks” to control cell fates. For their current research, they teamed with Phillippi, Huard and biologists of the Stem Cell Research Center at Children’s Hospital to gain experience in using growth factors to control differentiation in populations of MDSCs from mice.

The team envisions the ink-jet technology as potentially useful for engineering stem cell-based therapies for repairing defects where multiple tissues are involved, such as joints where bone, tendon, cartilage and muscle interface. Patients afflicted with conditions like osteoarthritis might benefit from these therapies, which incorporate the needs of multiple tissues and may improve post-treatment clinical outcomes.

The long-term promise of this new technology could be the tailoring of tissue-engineered regenerative therapies. In preparation for preclinical studies, the Pittsburgh researchers are combining the versatile ink-jet system with advanced real-time live cell image analysis developed at the Robotics Institute and Molecular Biosensor and Imaging Center to further understand how stem cells differentiate into bone, muscle and other cell types.

Related: Engineer Tried to Save His Sister and Invented a Breakthrough Medical DeviceNanoparticles With Scorpion Venom Slow Cancer SpreadVery Cool Wearable Computing Gadget from MITFunding Medical Research

Prion Proteins, Without Genes, Can Evolve

‘Lifeless’ prion proteins are ‘capable of evolution’

scientists transferred prion populations from brain cells to other cells in culture and observed the prions that adapted to the new cellular environment out-competed their brain-adapted counterparts. When returned to the brain cells, the brain-adapted prions again took over the population.

Charles Weissmann, head of Scripps Florida’s department of infectology who led the study, said: “On the face of it, you have exactly the same process of mutation and adaptive change in prions as you see in viruses.

“This means that this pattern of Darwinian evolution appears to be universally active. “In viruses, mutation is linked to changes in nucleic acid sequence that leads to resistance.

“Now, this adaptability has moved one level down- to prions and protein folding – and it’s clear that you do not need nucleic acid (DNA or RNA) for the process of evolution.”

He said: “The prion protein is not a clone, it is a quasi-species that can create different protein strains even in the same animal. “The abnormal prion proteins multiply by converting normal prion proteins.

“The implication of Charles Weissmann’s work is that it would be better to cut off that supply of normal prion proteins rather than risk the abnormal prion adapting to a drug and evolving into a new more virulent form.

Related: Challenging the Science Status QuoClues to Prion InfectivitySoil Mineral Degrades the Nearly Indestructible PrionBdelloid Rotifers Abandoned Sex 100 Million Years Ago

Microcosm by Carl Zimmer

cover of Microcosm by Carl Zimmer

Microcosm: E. Coli and the New Science of Life by Carl Zimmer is an excellent book. It is full of fascinating information and as usual Carl Zimmer’s writing is engaging and makes complex topics clear.

E-coli keep the level of oxygen low in the gut making the resident microbes comfortable. At any time a person will have as many as 30 strains of E. coli in their gut and it is very rare for someone ever to be free of E. coli. [page 53]

In 1943, Luria and Delbruck published the results that won them the 1969 Nobel Prize in Physiology or Medicine in which they showed that bacteria and viruses pass down their traits using genes (though it took quite some time for the scientific community at large to accept this). [page 70]

during a crisis E coli’s mutation rates could soar a hundred – or even a thousandfold… Normally, natural selection favors low mutation rates, since most mutations are harmful. But in times of stress extra mutations may raise the odds that organisms will hit on a way out of their crisis… [alternatively, perhaps] In times of stress, E coli. may not be able to afford the luxury of accurate DNA repair. Instead, it turns to the cheaper lo-fi polymerases. While they may do a sloppier job, E coli. comes out ahead [page 106]
Hybridization is not the only way foreign DNA got into our cells. Some 3 billion years ago our single-celled ancestors engulfed oxygen-breathing bacteria, which became the mitochondria on which we depend. And, like E. coli, our genomes have taken in virus upon virus. Scientists have identified more than 98,000 viruses in the human genome, along with our mutant vestiges of 150,00 others… If we were to strip out all our transgenic DNA, we would become extinct.

I highly recommend Microcosm, just as I highly recommend Parasite Rex, by Carl Zimmer.

Related: Bacteriophages: The Most Common Life-Like Form on EarthForeign Cells Outnumber Human Cells in Our BodiesAmazing Designs of LifeAmazing Science: RetrovirusesOne Species’ Genome Discovered Inside Another’s

Soren Bisgaard 1951-2009

photo of Soren Bisgaard

Soren Bisgaard died earlier this month of cancer. Soren was a student (Ph.D., statistics) of my father’s who shared the commitment to using applied statistics to improve people’s lives. I know this seem odd to many (I tried to describe this idea previously and read his acceptance of the 2002 William G. Hunter award).

Most recently Soren Bisgaard, Ph.D. was Professor of technology management at Eugene M. Isenberg School of Management at the University of Massachusetts – Amherst. He was an ASQ Fellow; recipient of Shewart Medal, Hunter Award, George Box Medal, among many others awards. Soren also served as the director of the Center for Quality and Productivity Improvement at the University of Wisconsin-Madison (founded by William Hunter and George Box) for several years.

I will remember the passion he brought to his work. He reminded me of my father in his desire to improve how things are done and provide people the opportunity to lead better lives. Those that bring passion to their work in management improvement are unsung heroes. It seems odd, to many, to see that you can bring improvement to people’s lives through work. But we spend huge amounts of our time at work. And by improving the systems we work in we can improve people’s lives. Soren will be missed, by those who knew him and those who didn’t (even if they never realize it).

The Future of Quality Technology: From a Manufacturing to a Knowledge Economy and From Defects to Innovations (pdf) by Soren Bisgaard. Read more articles by Søren Bisgaard.

Related: The Work of Peter ScholtesMistakes in Experimental Design and InterpretationThe Scientific Context of Quality Improvement by George Box and Soren Bisgaard, 1987 – William G. Hunter Award 2008: Ronald Does

Obituary Søren Bisgaard at ENBIS:
Continue reading

Briggs-Rauscher Oscillating Reaction

video showing the Briggs-Rauscher Oscillating Reaction. From Wikipedia:

The first known homogeneous oscillating chemical reaction, reported by W. C. Bray in 1921, was between hydrogen peroxide (H2O2) and iodate (IO3−) in acidic solution. Due to experimental difficulty, it attracted little attention and was unsuitable as a demonstration. In 1958 B. P. Belousov in the Soviet Union discovered the Belousov–Zhabotinsky reaction (BZ reaction), is suitable as a demonstration, but it too met with skepticism (largely because such oscillatory behavior was unheard of up to that time) until A. M. Zhabotinsky, also in the USSR, learned of it and in 1964 published his research. In May of 1972 a pair of articles in the Journal of Chemical Education brought it to the attention of two science instructors at Galileo High School in San Francisco. They discovered the Briggs–Rauscher oscillating reaction by replacing bromate (BrO3−) in the BZ reaction by iodate and adding hydrogen peroxide. They produced the striking visual demonstration by adding starch indicator.

The detailed mechanism of this reaction is quite complex. Nevertheless, a good general explanation can be given.
Continue reading