Category Archives: Science

Re-engineering the Food System for Better Health

Good food nation

According to the Centers for Disease Control, between 1980 and 2006 the percentage of obese teenagers in the United States grew from 5 to 18, while the percentage of pre-teens suffering from obesity increased from 7 to 17.

Obesity is widespread due to our national-scale system of food production and distribution, which surrounds children – especially lower-income children – with high-calorie products…
90 percent of American food is processed – according to the United States Department of Agriculture – meaning it has been mixed with ingredients, often acting as preservatives, that can make food fattening.

Now, in another report finished this October after meetings with food-industry leaders, the MIT and Columbia researchers propose a solution: America should increase its regional food consumption.

Only 1 to 2 percent of all food consumed in the United States today is locally produced. But the MIT and Columbia team, which includes urban planners and architects, believes widespread adoption of some modest projects could change that, by increasing regional food production and distribution.

To help production, the group advocates widespread adoption of small-scale innovations such as “lawn to farm” conversions in urban and suburban areas, and the “10 x 10 project,” an effort to develop vegetable plots in schools and community centers. Lawns require more equipment, labor and fuel than industrial farming nationwide, yet produce no goods. But many vegetables, including lettuce, cucumbers and peppers, can be grown efficiently in small plots.

As Albright sees it, the effort to produce healthier foods “fits right in with the health-care reform effort right now because chronic diseases are so costly for the nation.” America currently spends $14 billion annually treating childhood obesity, and $147 billion treating all forms of obesity.

Good stuff. We need to improve health in the USA. The current system is unhealthy and needs to be improved. The public good from improving the health of society is huge (both in terms of individual happiness and economic benefits).

Related: Rethinking the Food Production SystemStudy Finds Obesity as Teen as Deadly as SmokingEat food. Not too much. Mostly plants.Active Amish Avoid ObesityObesity Epidemic ExplainedAnother Strike Against Cola

Florence Nightingale: The passionate statistician

Florence Nightingale: The passionate statistician

She brought about fundamental change in the British military medical system, preventing any such future calamities. To do it, she pioneered a brand-new method for bringing about social change: applied statistics.

he statistics changed Nightingale’s understanding of the problems in Turkey. Lack of sanitation, she realized, had been the principal reason for most of the deaths, not inadequate food and supplies as she had previously thought.

As impressive as her statistics were, Nightingale worried that Queen Victoria’s eyes would glaze over as she scanned the tables. So Nightingale devised clever ways of presenting the information in charts. Statistics had been presented using graphics only a few times previously, and perhaps never to persuade people of the need for social change.

Applied statistics is a tool available to all to achieve great improvement. Unfortunately it is still very underused. As George Box says: applied statistics is not about proving a theorem, it’s about being curious about things. The goal of design of experiments is to learn and refine your experiment based on the knowledge you gain and experiment again. It is a process of discovery.

Related: articles on applied statisticsThe Value of Displaying Data WellStatistics for ExperimentersPlaying Dice and Children’s NumeracyQuality, SPC and Your CareerGreat Charts

Web Gadget to View Cell Sizes to Scale

graphic of red blood cellImage of cell size gadget from University of Utah

The Genetic Science Learning Center, University of Utah has a nice web gadget that lets you zoom in on various cells to see how large they are compared to each other. Above see a red blood cell, x chromosome, baker’s yeast and (small) e-coli bacterium.

A red blood cell is 8 micron (micro-meter 1/1,000,000 of a meter). E coli is 1.8 microns. Influenza virus is 130 nanometers (1/1,000,000,000 a billionth of a meter). Hemoglobin is 6.5 nanometers. A water molecule is 275 picometers (1 trillionth of a meter).

Related: Red Blood Cell’s Amazing FlexibilityHemoglobin as ArtAtomic Force Microscopy Image of a MoleculeNanotechnology Breakthroughs for Computer Chips

The Psychology of Choice: We can be Overwhelmed

Is less always more? by Dave Munger

shoppers with just a few flavors of jam to choose from are more likely to buy than those given dozens of options (including the original choices). It’s as if we’re paralyzed when we have a large number of options to choose from, and so we end up getting nothing.

Significantly more students bought the pens when there was a middle number of choices than when there were either high or low numbers of choices. So we appear to prefer a moderate number of choices — not too many, and not too few.

Shah and Wolford believe that purchasing patterns are likely to be similar for a wide range of products — although depending on the particular product, the optimal number of choices might be higher or lower than the 8-12 range they found for roller-ball pens.

In The Paradox of Choice – Why More Is Less, Barry Schwartz discusses related ideas and mentions the only kind of mobile phone you can’t get not is a simple one.

Related: The Psychology of Too Much ChoiceThe Decoy EffectThe Brain is Wired to Mull Over Decisions

Science Explained: RNA Interference

Explained: RNA interference

Every high school biology student learns the basics of how genes are expressed: DNA, the cell’s master information keeper, is copied into messenger RNA, which carries protein-building instructions to the ribosome, the part of the cell where proteins are assembled.

But it turns out the picture is far more complicated than that. In recent years, biologists have discovered a myriad of other molecules that fine-tune this process, including several types of RNA (ribonucleic acid). Through a naturally occurring phenomenon known as RNA interference, short strands of RNA can selectively intercept and destroy messenger RNA before it delivers its instructions.

Double-stranded RNA molecules called siRNA (short interfering RNA) bind to complementary messenger RNA, then enlist the help of proteins, the RNA-induced silencing complex. Those proteins cleave the chemical bonds holding messenger RNA together and prevent it from delivering its protein-building instructions.

This article from MIT is one, of many, showing MIT’s commitment to science education of the public. Good job, MIT.

Related: Antigen Shift in Influenza VirusesPosts explaining scientific principles and conceptsDNA Passed to Descendants Changed by Your LifeWhy Does Hair Turn Grey as We Age?Amazing Science: Retroviruses

Open Science: Looking at Dust

Open access paper: Migration of Contaminated Soil and Airborne Particulates to Indoor Dust.

Indoor dust is a mixture of soil tracked into a residence, particulate matter derived from ambient outdoor air, and importantly, organic matter. Indoor dust is about 40% organic matter by weight in residential housing. Particles tracked into a residence are redistributed on floor surfaces account for over 60% of the dust mass on floors.

Related: Untidy Beds May Keep us HealthyOpen Science: Explaining Spontaneous KnottingElectron Filmed for the First TimeWaste from Gut Bacteria Helps Host Control Weight

Energy Secretary Steve Chu Speaks On Funding Science Research

Energy Secretary Steve Chu (and Nobel Laureate) speaks with Google CEO Eric Schmidt about science research. One of the things Steve Chu is doing is funding high risk experiments that have great potential. This is something that is often said should be done but then people resort to safe investments in research. Taking these risks is a very good idea.

This is another example the remarkable way Google operates. The CEO actually understands science and the public good. Google also provides a huge amount of great material online in the form of webcasts of those speaking at Google. Google behaves like a company run by engineers. Other companies have engineers in positions of power but behave like companies run by any MBAs (whether they are lawyers, accountants, marketers or engineers).

Related: President’s Council of Advisors on Science and TechnologyScientists and Engineers in CongressEric Schmidt on Google, Education and EconomicsLarry Page on How to Change the WorldDiplomacy and Science ResearchGoogle Investing Huge Sums in Renewable Energy and is Hiring

Science and Engineering Lectures Online

VideoLectures.Net offers free and open access of a high quality video lectures presented by distinguished scholars and scientists at events like conferences, summer schools, workshops and science promotional events. The portal is aimed at promoting science, exchanging ideas and fostering knowledge sharing by providing high quality didactic contents not only to a scientific community but also to a general public.

Enjoy the great lectures they provide. Also see the Curious Cat directory of science and engineering webcast web sites. There are lots of great presentations available now. The last several years has really seen a huge increase in the valuable webcasts available online.

Related: Science PostercastsGreat Physics Webcast LecturesGoogle Tech Webcasts #4Toyota Engineering Development ProcessMarissa Mayer on Innovation at GoogleCanada Film Board Provides Open Access

The Only Known Cancerless Animal

Unlike any other mammal, naked mole rate communities consist of queens and workers more reminiscent of bees than rodents. Naked mole rats can live up to 30 years, which is exceptionally long for a small rodent. Despite large numbers of naked mole-rats under observation, there has never been a single recorded case of a mole rat contracting cancer, says Gorbunova. Adding to their mystery is the fact that mole rats appear to age very little until the very end of their lives.

The mole rat’s cells express p16, a gene that makes the cells “claustrophobic,” stopping the cells’ proliferation when too many of them crowd together, cutting off runaway growth before it can start. The effect of p16 is so pronounced that when researchers mutated the cells to induce a tumor, the cells’ growth barely changed, whereas regular mouse cells became fully cancerous.

“It’s very early to speculate about the implications, but if the effect of p16 can be simulated in humans we might have a way to halt cancer before it starts.” says Vera Gorbunova, associate professor of biology at the University of Rochester and lead investigator on the discovery.

In 2006, Gorbunova discovered that telomerase—an enzyme that can lengthen the lives of cells, but can also increase the rate of cancer—is highly active in small rodents, but not in large ones.

Until Gorbunova and Seluanov’s research, the prevailing wisdom had assumed that an animal that lived as long as we humans do needed to suppress telomerase activity to guard against cancer. Telomerase helps cells reproduce, and cancer is essentially runaway cellular reproduction, so an animal living for 70 years has a lot of chances for its cells to mutate into cancer, says Gorbunova. A mouse’s life expectancy is shortened by other factors in nature, such as predation, so it was thought the mouse could afford the slim cancer risk to benefit from telomerase’s ability to speed healing.

While the findings were a surprise, they revealed another question: What about small animals like the common grey squirrel that live for 24 years or more? With telomerase fully active over such a long period, why isn’t cancer rampant in these creatures?

Related posts: Nanoparticles With Scorpion Venom Slow Cancer Spreadposts on university researchGene Duplication and EvolutionGlobal Cancer Deaths to Double by 2030
Continue reading

Engineered Circuits That can Count Cellular Events

Engineered circuits can count cellular events by Anne Trafton

MIT and Boston University engineers have designed cells that can count and “remember” cellular events, using simple circuits in which a series of genes are activated in a specific order.

The first counter, dubbed the RTC (Riboregulated Transcriptional Cascade) Counter, consists of a series of genes, each of which produces a protein that activates the next gene in the sequence.

With the first stimulus — for example, an influx of sugar into the cell — the cell produces the first protein in the sequence, an RNA polymerase (an enzyme that controls transcription of another gene). During the second influx, the first RNA polymerase initiates production of the second protein, a different RNA polymerase.

The number of steps in the sequence is, in theory, limited only by the number of distinct bacterial RNA polymerases. “Our goal is to use a library of these genes to create larger and larger cascades,” said Lu.

The counter’s timescale is minutes or hours, making it suitable for keeping track of cell divisions. Such a counter would be potentially useful in studies of aging.

The RTC Counter can be “reset” to start counting the same series over again, but it has no way to “remember” what it has counted. The team’s second counter, called the DIC (DNA Invertase Cascade) Counter, can encode digital memory, storing a series of “bits” of information.

The process relies on an enzyme known as invertase, which chops out a specific section of double-stranded DNA, flips it over and re-inserts it, altering the sequence in a predictable way.

The DIC Counter consists of a series of DNA sequences. Each sequence includes a gene for a different invertase enzyme. When the first activation occurs, the first invertase gene is transcribed and assembled. It then binds the DNA and flips it over, ending its own transcription and setting up the gene for the second invertase to be transcribed next.

When the second stimulus is received, the cycle repeats: The second invertase is produced, then flips the DNA, setting up the third invertase gene for transcription. The output of the system can be determined when an output gene, such as the gene for green fluorescent protein, is inserted into the cascade and is produced after a certain number of inputs or by sequencing the cell’s DNA.

This circuit could in theory go up to 100 steps (the number of different invertases that have been identified). Because it tracks a specific sequence of stimuli, such a counter could be useful for studying the unfolding of events that occur during embryonic development, said Lu.

Other potential applications include programming cells to act as environmental sensors for pollutants such as arsenic. Engineers would also be able to specify the length of time an input needs to be present to be counted, and the length of time that can fall between two inputs so they are counted as two events instead of one.

Related: Cell Signals WebcastHow Cells AgeRoger Tsien Lecture On Green Florescent ProteinMeasuring Protein Bond Strength with Optical Tweezers