Category Archives: Technology

The Fall of Spore

image from Spore game

The hype for Spore as it was being developed was grand, and I was intrigued. Unfortunately the compromises I have read about have been disappointing. Seed has written about the development of the game in The Creation Simulation

This was Spore’s central problem: Could the game be both scientifically accurate and fun? The prototyping teams were becoming lost in their scientific interests.

Spore’s decision”‰—”‰to preserve the illusion of life at the expense of the actual facts of life”‰—”‰made for some substantial casualties. First to go in the cute-versus-science war were the extreme ends of the scale”‰—”‰galaxy formation and origins of life simulation”‰—”‰dismissed as being too abstract and dissipated. Next, small and then big laws were shattered and remade. Wright’s determination to represent faster-than-light travel as impossible crumbled in the face of making the spacefaring section of the game enjoyable. Evolution, despite his staunch Darwinism, became a massively telescoped process that depended on the external, deliberate interventions of the players. And so, instead of becoming the ultimate science project, Spore gradually became the ultimate game.

The snag is that Spore didn’t just jettison half its science”‰—”‰it replaced it with systems and ideas that run the risk of being actively misleading. Scientists brought in to evaluate the game for potential education projects recoiled as it became increasingly evident that the game broke many more scientific laws than it obeyed.

I can understand this process and even admit it might be the right choice for those involved. I am just disappointed we don’t have what was imagined (and hyped) early on – a great, fun, learning environment to enjoy and learn from.

The game has an amazingly low 1 1/2 star rating on Amazon with 3,121 reviews (I have never seen anything so popular so disliked on Amazon). Some of the disappointment is in the compromises made but I know a bunch is for the hated digital rights management DRM used by Spore.

Related: The Science Behind SporeProtein Folding “Game”Physics Simulation GameLego Learningposts on software

Dean Kamen: Stirling Engines

Dean Kamen: part man, part machine

Conceived in Scotland almost 200 years ago, the Stirling [engine] is a marvel of thermo-dynamics that could help to replace the internal combustion engine – in theory it can turn any source of heat into electricity, in silence and with 100 per cent efficiency. But corporations including Phillips, Ford and Nasa have devoted decades of research, and millions of dollars, to developing the engine, and all retired defeated, having failed to find a way of turning the theoretical principles of the engine into a workable everyday application. Kamen, nevertheless, has spent the past 10 years and, he estimates, up to $40 million working on the problem.

Now he and his engineers have built and tested a range of Stirling engines suitable for mass production that can be run on anything from jet fuel to cow dung. The one in the boot of the small blue car is designed to extend its range and constantly recharge its batteries to make a new kind of hybrid vehicle: one fit for the roads of the 21st century. A Stirling-electric hybrid, Kamen tells me, can travel farther and more efficiently than conventional electric cars; it generates enough power to run energy-hungry devices such as heaters and defrosters that are essential for drivers who, unlike those he calls the ‘tofu heads’ of California, must cope with a cold climate; and even using petrol, the engine runs far cleaner than petrol-electric hybrids such as Toyota’s Prius.

However, Kamen confesses, his new creation isn’t quite finished yet: ‘The Stirling engine’s not hooked up. Which really pisses me off.’

But it could work?

‘It will work,’ he says. ‘Trust me.’

Related: R&D Magazine’s 2006 Innovator of the YearRobotic Prosthetic Arms for People

Science Postercasts

I wrote about SciVee, over a year ago, saying I thought they could become a valuable resource. It has been taking longer to really get going than I thought it would but this new feature, Postercasts, is great. I am glad to see SciVee living up to my high expectation. Keep up the great work SciVee. The experience can still use improvement but this is a great start.

They have provided a tutorial on: How to Synchronize my Poster to my Video. I hope some of our readers try this out.

via: Interactive Virtual Posters

Related: Engineering TVScience WebcastsMagnetic Movie

Holographic Television on the Way

Ok, there really isn’t much new since I posted that holographic TV is getting closer. But won’t it be cool when I can have one in my house? And you might need to plan for it in your new house addition 🙂 Also, with the economic news lately a good distraction might be useful – Holographic television to become reality

The reason for renewed optimism in three-dimensional technology is a breakthrough in rewritable and erasable holographic systems made earlier this year by researchers at the University of Arizona.

Dr Nasser Peyghambarian, chair of photonics and lasers at the university’s Optical Sciences department, told CNN that scientists have broken a barrier by making the first updatable three-dimensional displays with memory.

“This is a prerequisite for any type of moving holographic technology. The way it works presently is not suitable for 3-D images,” he said. The researchers produced displays that can be erased and rewritten in a matter of minutes.

According to Peyghambarian, they could be constructed as a screen on the wall (like flat panel displays) that shows 3-D images, with all the image writing lasers behind the wall; or it could be like a horizontal panel on a table with holographic writing apparatus underneath.

Peyghambarian is also optimistic that the technology could reach the market within five to ten years. He said progress towards a final product should be made much more quickly now that a rewriting method had been found.

However, it is fair to say not everyone is as positive about this prospect as Peyghambarian. Justin Lawrence, a lecturer in Electronic Engineering at Bangor University in Wales, told CNN that small steps are being made on technology like 3-D holograms, but, he can’t see it being ready for the market in the next ten years.

I would have to say I am with those that think this might take a bit longer to be in place. But I would be glad to be wrong.

Related: Video GogglesOpen Source for LEGO Mindstormsposts on cool gadgetsAwesome Cat Cam

The Glove – Engineering Coolness

photo of The Glove - core control

Cool invention helps tired players bounce back

The device, called the Glove and invented by two Stanford biologists, is used by the Niners during games and at practice for players’ health. But its applications are far broader: from treating stroke and heart attack victims to allowing soldiers to remain in the field longer under intense heat.

It’s also a proven athletic performance enhancer – billed as better than steroids without any ill effects.

“We use the Glove primarily for health reasons,” said Dan Garza, the 49ers’ medical director. “But outside of sports, it has potential for a lot of exciting things. This technology is a much more effective way of cooling the core temperature than what we would typically do – misting, fanning, cold towels, fluids.”

The Glove works by cooling the body from inside out, rather than conventional approaches that cool from outside in. The device creates an airtight seal around the wrist, pulls blood into the palm of the hand and cools it before returning it to the heart and to overheated muscles and organs. The palm is the ideal place for rapid cooling because blood flow increases to the hands (and feet and face) as body temperature rises.

“These are natural mammalian radiators,” said Dennis Grahn, who invented the device with Stanford colleague Craig Heller.

Cool, you can buy your own for only $2,000 🙂 (The Glove used to be called Core Control) High resolution image. Related: Research on Reducing Hamstring InjuriesThe Science of the Football SwerveRandomization in Sportsposts on science and athletics

Goldbergian Flash Fits Rube Goldberg Web Site

Intentionally, I hope, the Rube Goldberg Machine Contest web site illustrates how to use needlessly complex engineering to design a tool that fails to follow sensible engineering guidelines. Rather than aiming for well designed usable products, the desire is to produce a machine that sort-of complies with the requirements but in a extremely foolish, convoluted way. Obviously it would be much more sensible to design that web site with html and it would just work simply, easily and quickly for everyone. But flash is the perfect tool to use if you want to promote Goldbergian thinking.

The web site, for example, does display content to a web browser. If that web browser has a flash plugin installed and it is the proper type. And sure the conventions of the web don’t work in this crippled environment but who cares about that when designing Goldbergian web sites. Of course if you actually want to design a good web site such choices would be – lets see, oh yeah, lame. I could link to the contest information – but in good Flash Goldbergian fashion that is not possible with the non-website website they have.

Related: Rube Goldberg Machine ContestRube Goldberg Devices from JapanNASA You Have a Problem340 Years of Royal Society Journals OnlineNSF Engineering Division is ReorganizationHow to Design for the Web

15 Photovoltaics Solar Power Innovations

15 Photovoltaics Solar Power Innovations You Must See

Researchers at McMaster University (coolest name ever) have succeeded in ‘growing’ light-absorbing nanowires made of high-performance photovoltaic materials on carbon-nanotube fabric. In other words, hairy solar panels.

The aim is to produce flexible, affordable solar cells that, within five years, will achieve a conversion efficiency of 20%. Longer term, it’s theoretically possible to achieve 40% efficiency!

while looking for a solution, researchers noticed that moths have very non-reflective eyes (“most likely an evolutionary defense against nocturnal predators”). The moth-eye process creates panels that reflect less than 2% of light. That’s a vast improvement over the 35 to 40% reflection rate seen without the anti-reflection coating layers.

Some experts are speculating that First Solar might beat over 80 competitors to achieve manufacturing costs low enough to market solar panels at less than $1 per Watt, the target considered necessary for solar to compete with coal-burning electricity on the grid.

Related: Solar Power: Economics, Government and TechnologyCost Efficient Solar Dish by Studentsposts on solar energyLarge-Scale, Cheap Solar Electricity

Best Research University Rankings – 2008

The annual ranking of research Universities are available from Shanghai’s Jiao Tong University. The methodology values publications and faculty awards which provides a better ranking of research (rather than teaching). Results from the 2008 rankings of Top 500 Universities worldwide, country representation of the top schools:

location Top 100 % of World
Population
% of World GDP % of top 500
USA 54     4.6%   27.2%  31.6%
United Kingdom 11  0.9  4.9 8.3
Germany   6  1.3  6.0 8.0
Japan   4  2.0  9.0 6.2
Canada   4  0.5  2.6 4.2
Sweden   4  0.1  0.8 2.2
France   3  0.8  4.6 4.6
Switzerland   3  0.1  0.8 1.6
Australia   3  0.3  1.6 3.0
Netherlands   2  0.2  1.4 2.4
Denmark   2  0.1  0.6 0.8
Finland   1  0.1  0.4 1.2
Norway   1  0.1  0.7 0.8
Israel   1  0.1  0.3 1.2
Russia   1  2.2  2.0 0.4
China  20.5  6.6 6.0
India  17.0  1.9 0.4

There is little change in most of the data from last year, which I think is a good sign, it wouldn’t make much sense to have radical shifts over a year in these rankings. Japan lost 2 schools in the top 100, France lost 1. Denmark (Aarhus University) and Australia (University of Sydney) gained 1. Last year there was a tie so there were 101 schools in the top 100.

The most dramatic data I noticed is China’s number of top 500 schools went from 14 to 30, which made me a bit skeptical of what caused that quick change. Looking more closely last year they reported the China top 500 totals as (China 14, China-Taiwan 6 and China-Hong Kong 5). That still gives them an impressive gain of 5 schools.

Singapore has 1 in the 102-151 range. Taiwan has 1 ranked in the 152-200 range, as do Mexico, Korea and Brazil. China has 9 in the 201-302 range (including 3 in Hong Kong). India has 2 in the 303-401 range.

University of Wisconsin – Madison is 17th again 🙂 My father taught there while I grew up.
Continue reading

Wireless Power

   
An end to spaghetti power cables by Maggie Shiels, BBC News

Mr Rattner envisaged a scenario where a laptop’s battery could be recharged when the machine gets within several feet of a transmit resonator which could be embedded in tables, work surfaces, picture frames and even behind walls.

Intel’s technology relies on an idea called magnetic induction. It is a principle similar to the way a trained singer can shatter a glass using their voice; the glass absorbs acoustic energy at its natural frequency. At the wall socket, power is put into magnetic fields at a transmitting resonator – basically an antenna. The receiving resonator is tuned to efficiently absorb energy from the magnetic field, whereas nearby objects do not.

Intel’s demonstration has built on work done originally by Marin Soljacic, a physicist at Massachusetts Institute of Technology (MIT). At the Intel Developer Forum in San Francisco, researcher Alanson Sample showed how to make a 60-watt light bulb glow from an energy source three feet away. This was achieved with relatively high efficiency, only losing a quarter of the energy it started with.

Don’t expect to see this available commercially this year, they estimate it is at least 5 years away. Though this is not university and business collaboration in the sense they are working together, it is in the sense that Intel is building upon the work MIT did. See other posts on university and business collaboration.

Related: Water From AirEngineers Save EnergyMicrochip Cooling Innovation

Engineers Should Follow Their Hearts

Steve Wozniak, Apple co-founder is a great engineer and full of wonderful quotes for engineers to take to heart. The autobiography of the Woz is certainly a good read for any engineer. Woz urges engineers to follow their hearts

Wozniak talked about a life driven by his passion for the electronics and computing. And passion can be a more important incentive than money, he said.

“Sometimes when you’re short of resources it forces you to do better work,” he said. To design the Apple’s logic circuitry, “I couldn’t afford an online timeshare computer system. I had to write down ones and zeros (and simulate the computer’s operations). It was all done by hand, never once on a computer.”

He offered his computer designs to HP five times, but they never were interested. “I would not sell something for money without my employer getting a cut of it.”

Related: Interview of Steve WozniakProgrammers at WorkThe Woz SpeaksCurious Cat Science and Engineering books