Category Archives: Technology

Data Center Energy Needs

It’s Too Darn Hot

The tech industry is facing an energy crisis. The cost of power consumption by data centers doubled between 2000 and 2006, to $4.5 billion, and could double again by 2011, according to the U.S. government. With energy prices spiking, the challenge of powering and cooling these SUVs of the tech world has become a major issue for corporations and utilities.

The modern data center is like a vast refrigerator with hundreds or thousands of ovens blazing away inside. Six-foot-tall metal racks stacked with pizza box-size computers, storage devices, and network-routing machines are lined up in rows. Chilled air blows through the equipment from vents in the floors of “cold aisles.” Hot air blows out of the back ends into “hot aisles” and is drawn off and vented out of the building. Inside the centers, there’s a dull roar as large quantities of air shoot through ducts, vents, and computers.

So intense is the competition among tech companies to lower their costs of processing data that some treat information about their energy use like state secrets.

The $4.5 billion spent in the U.S. in 2006 is the equivalent of the electric bills for 5.8 million U.S. households.

When you realize the huge cooling needs (in addition to the need for electricity to run the computers) you can see the huge advantage of a cold climate where you can take advantage of cool air for cooling.

Related: Geothermal Power in AlaskaCost of Powering Your PCGoogle Investing Huge Sums in Renewable EnergyHigh-efficiency computer power supplies

Retooling Theory and Practice

Retooling Theory and Practice

“Education in the composites industry is haphazard at best,” admits Gregor Welpton, president of Black Feather Boats (Douglas, Alaska). Although a number of training programs for both engineers and technicians have been spawned over the years, they are essentially independent and, therefore, largely unrelated efforts. The product of universities, community colleges, regional training centers, technical institutes, private training companies and composites vendors, these offerings run a wide gamut from undergraduate and advanced degrees and technical certifications to short courses and periodic seminars. A variety of teaching methods are employed by these programs, including classroom instruction and/or video-based training, video-interactive training and, least likely, hands-on lab work.

“Currently, composites education is being driven by the individual institution,” explains Andre Cocquyt, president of GRPGuru (Brunswick, Maine) and one of the architects of a new composites training curriculum being developed in Brunswick. “There is no consistent approach, no consistent level of education, no qualification,” he adds. The unintended consequence is a dramatic variation in the competency levels of program graduates.

Speaking for many industry business owners, Welpton says the time has come for a coordinated industrywide education effort: “The industry needs an education initiative,” he says, “so that the employers know what they’re getting out of the institutions and the employees know what is expected of them when they show up to work.”

Related: Science Researchers: Need for Future EmployeesEducational Institutions Economic ImpactHow Many Engineers?

How Computers Boot Up

How Computers Boot Up

Things start rolling when you press the power button on the computer (no! do tell!). Once the motherboard is powered up it initializes its own firmware – the chipset and other tidbits – and tries to get the CPU running. If things fail at this point (e.g., the CPU is busted or missing) then you will likely have a system that looks completely dead except for rotating fans. A few motherboards manage to emit beeps for an absent or faulty CPU, but the zombie-with-fans state is the most common scenario based on my experience. Sometimes USB or other devices can cause this to happen: unplugging all non-essential devices is a possible cure for a system that was working and suddenly appears dead like this. You can then single out the culprit device by elimination.

If all is well the CPU starts running. In a multi-processor or multi-core system one CPU is dynamically chosen to be the bootstrap processor (BSP) that runs all of the BIOS and kernel initialization code. The remaining processors, called application processors (AP) at this point, remain halted until later on when they are explicitly activated by the kernel. Intel CPUs have been evolving over the years but they’re fully backwards compatible, so modern CPUs can behave like the original 1978 Intel 8086, which is exactly what they do after power up. In this primitive power up state the processor is in real mode with memory paging disabled. This is like ancient MS-DOS where only 1 MB of memory can be addressed and any code can write to any place in memory – there’s no notion of protection or privilege.

Related: Harvard Course on Understanding Computers and the InternetProgramming RubyBabbage Difference Engine In Lego

Pax Scientific

Nature Gave Him a Blueprint, but Not Overnight Success

Mr. Harman is a practitioner of biomimicry, a growing movement of the industrial-design field. Eleven years ago, he established Pax Scientific to commercialize his ideas, thinking that it would take only a couple of years to convince companies that they could increase efficiency, lower noise or create entirely new categories of products by following his approach.

His radical ideas have so far found a cautious reception in the aircraft, air- conditioning, boating, pump and wind turbine industries. Mr. Harman’s experience is not unusual. Rather than beating a path to the door of mousetrap designers, the world seems to actively avoid them.

Even in fields such as the computer industry, which celebrates innovation, systemic change can be glacial.

In another hopeful sign, a world that long ignored energy efficiency is suddenly thinking of nothing else. “We tried for years to promote energy conservation, and we couldn’t find one who was interested,” he said. “Now the world has done a U-turn.”

Yet another example that new knowledge is not enough. It takes much longer for good ideas to be put into practice than seems reasonable (until you get your head around the idea it takes a fair amount of time for new ideas to be adopted).

One positive aspect of this reality is that if you can take advantage of new ideas before others you can gain an advantage. It isn’t necessarily true that just because now everyone knows about some new idea that you have no opportunity to use the knowledge before others.

Related: The Future is EngineeringEngineering the Boarding of AirplanesReduce Computer Waste100 Innovations for 2006Innovation at GoogleEducational Institutions Economic Impact

Printing Buildings

Projections indicate costs will be around one fifth as much as conventional construction. Using this process, a single house or a colony of houses, each with possibly a different design, may be automatically constructed in a single run, embedded in each house all the conduits for electrical, plumbing and air-conditioning.

The machine will cost between $500K to $700K for average size (2000 sq ft — 200 m2) detached houses. This is not much given that a concrete pump truck is now $300k-$400K. Note that with one machine numerous homes can be built. The first commercial machines to be available this year, 2008. The machine will be collapsible to form into an easy truck load. The unloading and setup will take between 1-2 hours.

Behrokh Khoshnevis is the visionary who has been driving this concept. He is the Director of the Center for Rapid Automated Fabrication Technologies (CRAFT) and Director of Manufacturing Engineering Graduate Program at USC.

Very cool stuff. Related: Open Source 3-D PrintingA plane You Can Print$35 million to the USC School of EngineeringContractor Warned NYC About CraneSandwich Brick, Reusing Waste Material

New Iron Based Superconductors

Research Suggests Novel Superconductor Is in a Powerful Class All its Own

discovered surprising magnetic properties in the new superconductors that suggest they may have very powerful applications — from improved MRI machines and research magnets, to a new generation of superconducting electric motors, generators and power transmission lines. The research also adds to the long list of mysteries surrounding superconductivity, providing evidence that the new materials, which scientists are calling “doped rare earth iron oxyarsenides,” develop superconductivity in quite a new way

Early this year, Japanese scientists who had been developing iron-based superconducting compounds for several years, finally tweaked the recipe just right with a pinch of arsenic. The result: a superconductor, also featuring oxygen and the rare earth element lanthanum, performing at a promising -413 degrees F (26 K). The presence of iron in the material was another scientific stunner: Because it’s ferromagnetic, iron stays magnetized after exposure to a magnetic field, and any current generates such a field. As a rule, magnetism’s effect on superconductivity is not to enhance it, but to kill it.

Iron based superconductors might resist magnetic fields over 100 Tesla

The new superconductors seem like they will be able to make improved MRI machines and research magnets, a new generation of superconducting electric motors, generators and power transmission lines. Tesla is a unit of magnetic field strength; the Earth’s magnetic field is one twenty thousandth of a tesla.

Related: Superconducting SurpriseMystery of High-Temperature SuperconductivitySuperconductivity and Superfluidity

Saving Fermilab

Fermilab was once the premiere particle physics research lab. It is still a very important research lab. But, I have said before, other countries are the ones making the larger efforts lately to invest in science and technology centers of excellence that the US was making in the 1960’s and 1970’s: Economic Strength Through Technology Leadership, Investing in Technology Excellence, etc..

I have also said that the past success of the US has left it in a still very strong position. For example, the anonymous donor that saved Fermilab with a $5 million donation likely benefited from the successful investments in science centers of excellence in the past (few countries – maybe 30, can rely on large donations from wealthy individuals, to sustain centers of excellence and I don’t think any approach what the USA has now – Howard Hughes Medical Institute, Standford, MIT…).

Excellent post on the the saving of Fermilab, To the person who saved Fermilab: Thank You.:

The facility has recently seen financial difficulties which have resulted in the layoffs of research staff and dramatic cuts in experiments. The world class research facility has been left to scrape together funds to pay the bills and has even had to auction off equipment and ask staff members to take pay cuts just to keep the lights on in the laboratories.

Fermilab also has an illustrious history of achievements in the field of supercomputer development and parallel processing. Fermilab has been on the forefront of applying supercomputing to physics research and is one of the top supercomputing centers of the world. Fermilab has claimed the world’s most powerful supercomputer on multiple occasions – although the title is rarely held long by any system due to the continuous advancements in computing. In recent years, Fermilab has been a leader in the development of “lattice” supercomputing systems and has developed methods for efficiently utilizing the power of multiple supercomputers in different locations through more [efficient] distribution practices.

To some, the construction of the Large Hadron Collider at CERN may seem to reduce the importance of Fermilab’s capabilities, but this is not at all the case. Although the LHC may take the title for the overall size and energy levels of a particle accelerator, Fermilab remains a uniquely capable particle physics research institution. Though less powerful, the Tevatron is able to operate for longer periods of time than the LHC and will likely require less downtime for maintenance, allowing for greater access and numerous types of research activities.

Related: CERN Pressure Test Failureposts on funding science researchMatter to Anti-Matter 3 Trillion Times a SecondGoogle Investing Huge Sums in Renewable EnergyGates Foundation and Rotary Pledge $200 Million to Fight PolioWashington WasteWashington Paying Out Money it Doesn’t HaveProposal to Triple NSF GFRP Awards and the Size of the Awards by 33%

Interview with Donald Knuth

Interview with Donald Knuth by Andrew Binstock, April 2008:

I currently use Ubuntu Linux, on a standalone laptop—it has no Internet connection. I occasionally carry flash memory drives between this machine and the Macs that I use for network surfing and graphics; but I trust my family jewels only to Linux. Incidentally, with Linux I much prefer the keyboard focus that I can get with classic FVWM to the GNOME and KDE environments that other people seem to like better. To each his own.

I’m basically advising young people to listen to themselves rather than to others, and I’m one of the others. Almost every biography of every person whom you would like to emulate will say that he or she did many things against the “conventional wisdom” of the day.

Still, I hate to duck your questions even though I also hate to offend other people’s sensibilities – given that software methodology has always been akin to religion. With the caveat that there’s no reason anybody should care about the opinions of a computer scientist/mathematician like me regarding software development, let me just say that almost everything I’ve ever heard associated with the term “extreme programming” sounds like exactly the wrong way to go…with one exception. The exception is the idea of working in teams and reading each other’s code. That idea is crucial, and it might even mask out all the terrible aspects of extreme programming that alarm me.

I also must confess to a strong bias against the fashion for reusable code. To me, “re-editable code” is much, much better than an untouchable black box or toolkit. I could go on and on about this. If you’re totally convinced that reusable code is wonderful, I probably won’t be able to sway you anyway, but you’ll never convince me that reusable code isn’t mostly a menace.

Related: Donald Knuth – Computer ScientistProgrammers at WorkPreparing Computer Science Students for JobsTeach Yourself Programming in Ten YearsCurious Cat Ubuntu posts

Inspirational Engineer

One of the topics I care about is engineers making a real difference in the world. I lived in Singapore and Nigeria while I was growing up and traveled widely. My father was a professor of engineering (chemical, industrial), statistics and business. He was very interested in applying technology and human knowledge to help people have better lives, and I share that interest.

People like William Kamkwamba are the people that are worthy of respect. I wish the USA was more focused on people that are worthy of attention, instead of who the news media choose to show and people choose to read about. At least a few of you seem to like reading about those I do, based on the traffic this blog receives (well actually that would be a pretty poor metric, let say the attention popular science sites, magazines, podcasts, TV shows… receive).

Another video with William at TED. I posted about William previously: Make the World Better and Home Engineering: Windmill for Electricity.

Related: Appropriate Technologyposts tagged: engineersWhat Kids can LearnWater and Electricity for All

Engineers Without Borders

Engineering as diplomacy

You cannot look into the eyes of a child who is dying from a disease caused by drinking dirty water — something that rarely, if ever, happens in the United States — and not feel changed. You cannot stand before her parents without thinking, “I’m an engineer. There must be something I can do.”

A year later, I returned with 10 engineering students from the University of Colorado. We devised a rudimentary pumping system, bringing water to the people of San Pablo. Today, the village’s young girls go to school and are healthier.

That trip was a transforming experience, not just for the villagers, but also for me. Intuitively, we engineers like things big — expansive bridges, colossal dams, massive tunnels. My experience taught me that small-scale engineering can have the most impact on people’s lives.

When I returned to Boulder, I began building something else: Engineers Without Borders — USA. The organization was formed out of the conviction that engineers have a leadership role to play in addressing some of the world’s most serious problems: contaminated water, poor sanitation systems, expensive or harmful energy sources.

In a world focused on bigger and newer, there is growing recognition that small-scale engineering can play a major role in helping end the cycle of poverty that persists among almost half the world’s population. Studies by the World Bank and United Nations suggest the most basic technology is critical to bringing more than 3 billion people out of poverty.

Today EWB-USA counts more than 11,000 student and professional engineers as members and works in 43 countries on 300 projects involving water, sanitation, energy and shelter. Whether it’s combining sustainable technologies with advanced construction techniques to bring affordable housing to pockets of the world, drilling drinking water wells in Kenya, constructing fog collectors in the Himalayas to harvest fresh water or installing solar panels to provide energy for a remote hospital in Rwanda, we are healing communities throughout the globe, giving people dignity and hope for better lives.

Engineers without Borders is another vivid example of the benefits engineering brings to society.

Related: Engineering a Better WorldScientists and Engineers Without BordersKick Start Appropriate Technology