Key Indicator for Malignant Melanoma Found

Skin cancer detection breakthrough

The researchers found that certain biochemical elements in the DNA of normal pigment-producing skin cells and benign mole cells are absent in melanoma cells. Loss of these methyl groups — known as 5-hmC — in skin cells serves as a key indicator for malignant melanoma. Loss corresponded to more-advanced stages of melanoma as well as clinical outcome.

Strikingly, researchers were able to reverse melanoma growth in preclinical studies. When the researchers introduced enzymes responsible for 5-hmC formation to melanoma cells lacking the biochemical element, they saw that the cells stopped growing.

“It is difficult to repair the mutations in the actual DNA sequence that are believed to cause cancer,” said Christine Lian, a physician-scientist in the Department of Pathology at BWH and one of the lead authors. “So having discovered that we can reverse tumor cell growth by potentially repairing a biochemical defect that exists — not within the sequence but just outside of it on the DNA structure — provides a promising new melanoma treatment approach for the medical community to explore.”

Because cancer is traditionally regarded as a genetic disease involving permanent defects that directly affect the DNA sequence, this new finding of a potentially reversible abnormality that surrounds the DNA (thus termed “epigenetic”) is a hot topic in cancer research, according to the researchers.

In the United States, melanoma is the fifth most common type of new cancer diagnosis in men and the seventh most common type in women. The National Cancer Institute estimates that in 2012 there will be 76,250 new cases and 9,180 deaths in the United States owing to melanoma.

Thankfully scientists keep making great progress in understanding and finding potential clues to treating cancer. And big gains have been made in treating some cancers over the last few decades. But the research successes remain difficult to turn into effective solutions in treating patients.

I am thankful we have so many scientists doing good work in this difficult and important area (cancer).

Related: Webcast of a T-cell Killing a Cancerous CellNanoparticles With Scorpion Venom Slow Cancer SpreadDNA Passed to Descendants Changed by Your LifeResearchers Find Switch That Allows Cancer Cells to Spread

Science Explained: Cool Video of ATP Synthase, Which Provides Usable Energy to Us

[I replaced the webcast – as so often happen the non-Youtube video embed failed to work as time passed]

This webcast shows animations of ATP synthase structure and the mechanism for synthesizing ATP. Biology is incredibly cool. Too bad they didn’t have stuff like this when I was in school, instead biology was mainly about memorizing boring lists of stuff.

ATP (adenosine tri-phosphate) transports chemical energy within cells. When one of the phosphates is released by ATP energy is given off (and ATP becomes ADP (adenosine di-phosphate) + Pi (inorganic phosphate). And then the synthase structure can then turn it back into ATP to be used again.

The human body, which on average contains only 250 grams of ATP, turns over its own body weight equivalent in ATP each day.

Related: ATP synthase lecture notes University of IllinoisWebcast on the makeup and function of eukaryotic cellsScience Explained: PhotosynthesisVideo showing malaria breaking into cell

Should Giant Viruses Be Included on the Tree of Life?

A new study of giant viruses supports the idea that viruses are ancient living organisms and not inanimate molecular remnants. The study may reshape the universal family tree, adding a fourth major branch to the three that most scientists agree represent the fundamental domains of life. But I am not sure that makes sense. The reason given for viruses not being “life” is that they cannot reproduce themselves – they hijack living cells to reproduce. The research in the past history of viruses as they evolved into current viruses is interesting but I don’t see the reason to classify current viruses as life.

The researchers used a relatively new method to peer into the distant past. Rather than comparing genetic sequences, which are unstable and change rapidly over time, they looked for evidence of past events in the three-dimensional, structural domains of proteins. These structural motifs, called folds, are relatively stable molecular fossils that – like the fossils of human or animal bones – offer clues to ancient evolutionary events, said University of Illinois crop sciences and Institute for Genomic Biology professor Gustavo Caetano-Anollés, who led the analysis.

“Just like paleontologists, we look at the parts of the system and how they change over time,” Caetano-Anollés said. Some protein folds appear only in one group or in a subset of organisms, he said, while others are common to all organisms studied so far.

“We make a very basic assumption that structures that appear more often and in more groups are the most ancient structures,” he said.

Most efforts to document the relatedness of all living things have left viruses out of the equation, Caetano-Anollés said.

“We’ve always been looking at the Last Universal Common Ancestor by comparing cells,” he said. “We never added viruses. So we put viruses in the mix to see where these viruses came from.”

The researchers conducted a census of all the protein folds occurring in more than 1,000 organisms representing bacteria, viruses, the microbes known as archaea, and all other living things. The researchers included giant viruses because these viruses are large and complex, with genomes that rival – and in some cases exceed – the genetic endowments of the simplest bacteria, Caetano-Anollés said.

Related: Plants, Unikonts, Excavates and SARsBacteriophages: The Most Common Life-Like Form on Earth8 Percent of the Human Genome is Old Virus GenesMicrobes Retroviruses

Open access paper: Giant Viruses Coexisted With the Cellular Ancestors and Represent a Distinct Supergroup Along With Superkingdoms Archaea, Bacteria and Eukarya

The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life.

Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet’s biosphere.

Continue reading

Man in Coma for 7 Years was Given a Sleeping Pill and Woke Up

Lazarus pill miracle for E Cape man, 9 September 2012

After reading a report in City Press last month, his wife, Nomfundo, insisted that he be given a prescription for the sleeping pill Stilnox, which has the opposite effect on those with brain injuries.

It worked – and brought him out of a seven-year coma.

But on August 12, family friend Nceba Mokoena came across an article in City Press about a miracle recovery made by another car crash victim, hundreds of kilometres away in Gauteng.

Louis Viljoen was given the sleeping pill by chance by his mother, Sienie.

She had noticed he wasn’t sleeping peacefully and asked her doctor if she could give him half a sleeping tablet. After she did, Louis opened his eyes and said “Hello Mamma”, his first words in five years.

Very cool anecdote and example that modern medicine has many miraculous cures but the medical system can’t always use them as well as we would hope. Even with all the knowledge we have today just getting that information into the right doctor’s minds is very hard. And the complexity of diagnoses and interactions makes medical care still an art as well as a science.

So is this just some freak accident. Partially, in the mother giving her son a sleeping pill to reduce his seeming restlessness in the coma. But the effect of Stilnox in bringing coma victims out of a coma has been documented previously.

Reborn from persistent vegetative state, 12 September 2006

Four three years, Riaan Bolton has lain motionless, his eyes open but unseeing. After a devastating car crash doctors said he would never again see or speak or hear. Now his mother, Johanna, dissolves a pill in a little water on a teaspoon and forces it gently into his mouth. Within half an hour, as if a switch has been flicked in his brain, Riaan looks around his home in the South African town of Kimberley and says, “Hello.” Shortly after his accident, Johanna had turned down the option of letting him die.

Three hundred miles away, Louis Viljoen, a young man who had once been cruelly described by a doctor as “a cabbage”, greets me with a mischievous smile and a streetwise four-move handshake. Until he took the pill, he too was supposed to be in what doctors call a persistent vegetative state.

Across the Atlantic in the United States, George Melendez, who is also brain-damaged, has lain twitching and moaning as if in agony for years, causing his parents unbearable grief. He, too, is given this little tablet and again, it’s as if a light comes on. His father asks him if he is, indeed, in pain. “No,” George smiles, and his family burst into tears.

It all sounds miraculous, you might think. And in a way, it is. But this is not a miracle medication, the result of groundbreaking neurological research. Instead, these awakenings have come as the result of an accidental discovery by a dedicated – and bewildered – GP. They have all woken up, paradoxically, after being given a commonly used sleeping pill.

Medical care is still today an extremely difficult area where highly trained and continuously learning doctors still have a great deal of trouble keeping up with the latest medical knowledge.

Related: Hospital Reform, IHI’s efforts to get good practices adoptedNorway Reduces Infections by Reducing Antibiotic UseMajority of Clinical Trials Don’t Provide Meaningful EvidenceContinual LearningPhysical Activity for Adults: Inactivity Leads to 5.3 Million Early Deaths a Year

Learning About Life over 200 Million Years Ago From Samples Trapped In Amber

230-Million-Year-Old Mite Found in Amber by Charles Choi

One way to learn more about prehistoric life is amber — fossilized tree resin. Before it hardened, this ooze often dripped over bugs and other wildlife perched on its tree’s bark, entombing them for millions of years.

“Amber is an extremely valuable tool for paleontologists because it preserves specimens with microscopic fidelity, allowing uniquely accurate estimates of the amount of evolutionary change over millions of years,” Grimaldi said.

Scientists have now revealed arthropods trapped in 230-million-year-old amber from northeastern Italy, which appears to hold the most abundant outcrops of Triassic amber in the world. These are the oldest amber-trapped arthropods by about 100 million years, and are the first arthropods to be found in amber from the Triassic.

These mites are unexpectedly similar to their closest relatives, modern gall mites, creatures that feed on plants and cause abnormal growths known as galls to form around them.

“You would think that by going back to the Triassic you’d find a transitional form of gall mite, but no,” Grimaldi said. “Even 230 million years ago, all of the distinguishing features of this family were there — a long, segmented body; only two pairs of legs instead of the usual four found in mites; unique feather claws.”

These discoveries are very cool. The process of the discovery is often fairly tedious.

“The challenge for us, personally, is the tedious work required to screen through so many tiny droplets of amber — 70,000 droplets for three specimens, in this case!”

Related: Marine Plankton From 100 Million Years Ago Found in AmberDino-Era Feathers Found Encased in AmberAmber Pieces Containing Remains from Dinosaurs and Birds Show Feather Evolution

Antibiotics fuel obesity by creating microbe upheavals

Antibiotics fuel obesity by creating microbe upheavals

We aren’t single individuals, but colonies of trillions. Our bodies, and our guts in particular, are home to vast swarms of bacteria and other microbes. This “microbiota” helps us to harvest energy from our food by breaking down the complex molecules that our own cells cannot cope with. They build vitamins that we cannot manufacture. They ‘talk to’ our immune system to ensure that it develops correctly, and they prevent invasions from other more harmful microbes. They’re our partners in life.

What happens when we kill them?

Farmers have been doing that experiment in animals for more than 50 years. By feeding low doses of antibiotics to healthy farm animals, they’ve found that they could fatten up their livestock by as much as 15 percent.

Ilseung Cho from the New York University School of Medicine has confirmed that hypothesis. By feeding antibiotics to young mice, he has shown that the drugs drastically change the microscopic communities within their guts, and increase the amount of calories they harvest from food. The result: they became fatter.

I continue to believe we are far to quick to medicate. We tremendously overuse anti-biotis and those costs are huge. They often are delays and systemic and given our current behavior we tend to ignore delayed and systemic problems.

The link between the extremely rapid rise in obesity and the overuse of anti-biotics is in need of much more study. It seems a possible contributing factor but there is much more data needed to confirm such a link. And other factors still seem dominant to me: increase in caloric intake and decrease in physical activity.

Related: Science Continues to Explore Causes of Weight GainWaste from Gut Bacteria Helps Host Control WeightHealthy Diet, Healthy Living, Healthy WeightRaising Our Food Without Antibiotics

The Eagle Has Landed

Neil Armstrong and Buzz Aldren land on the moon: July 20, 1969. As Neil Armstrong took humanity’s first step onto the Moon he said:

That’s one small step for man, one giant leap for mankind.

Related: Experiment, dropping a hammer and feather on the MoonPlanetary scientist Jennifer Heldmann discusses the MoonApply to be an AstronautOne Giant Leap For Mankind

The Science Behind Hummingbird Flight

Aerodynamics of the hovering hummingbird

Hummingbirds and insects have evolved for sustained hovering flight from vastly different ancestral directions, and their distinct phylogenies underlie the differences in their aerodynamic styles. In all other birds—and, presumably, hummingbird ancestors—the downstroke provides 100% of weight support during slow flight and hovering. Given that many birds possess the mass-specific power (using anaerobic metabolism) to hover for short periods, the selective pressure on hummingbird ancestors was probably for increased efficiency (resulting in stiff wings with greatly simplified
kinematics), and an upstroke muscle (the supracoracoideus) that makes the recovery stroke rapid, while contributing enough to the hovering power requirements to allow the downstroke muscle (the pectoralis) to operate within its aerobic limits.

In other words, this pseudosymmetrical wingbeat cycle is good enough, and although hummingbirds do not exhibit the elegant aerodynamic symmetry of insects, natural selection rewards ‘good enough’ as richly as it does our aesthetic ideals

Related: Praying Mantis Attacks HummingbirdFriday Fun: Crow Sledding, Flying Back Up and Sledding Down AgainBird Using Bait to Fish

Roominate: Inspiring Artists, Engineers and Visionaries

Roominate is a cool new toy created by 3 engineering students aimed at giving young engineers a way to learn, experiment and create. The 3 women used kickstarter to get the funds needed to launch their product. They raised $85,000 (the goal was $25,000).

We’re more than just a toy company. We want to inspire your daughters to be the great artists, engineers, architects, and visionaries of their generation. We intend to give them every tool to reach that potential.

Founders:

Bettina Chen: CalTech BS in Electrical Engineering, masters in Electrical Engineering from Stanford.

Alice Brooks: MIT BS in Mechanical Engineering, currently at Stanford pursuing masters in Mechanical Engineering design.

Jennifer Kessler: Bachelor degree from University of Pennsylvania, currently an MBA student at Stanford.

This is yet another example of entrepreneurship shown by Standford students. The USA is hugely benefited by Stanford (along with a few other schools: MIT, Caltech, etc.). There is little a country can do that is as helpful economically as encouraging the type of entrepreneurship Standford does.

Related: Awesome Gifts for the Maker in Your LifeFootballs Providing Light to Those Without Electricity at HomeGirls Sweep Top Honors at Siemens Competition in Math, Science and TechnologyFix it Goo