Science for Kids

‘Sciencing’ with kids by Prakash Rao:

Let us understand well that science is better learnt through activities, experiences, experiments and projects.

Children’s experiences need to be real, concrete and [tangible]. We should never get carried away by just contents and facts. Link experiences to children’s life. Then they will feel a desire to know.

Children are naturally inquisitive. Mainly we need to provide opportunities for them to do what they would do naturally. In previous posts we have highlighted many ways to give kids the chance to learn and figure out how things work.

Technology Education: USA and India

US wants to replicate India’s technology education success by Bibhu Ranjan Mishra:

Sources say that over 70,000 Indian students are undergoing higher studies in the US, which is the highest anywhere in the world. In contrast, there are just 780 US students presently undergoing studies in some Indian universities, mainly in IT, agricultural sciences and working with high schools to understand the pattern of higher secondary education in India.

Both Spellings and Enzi, who were the part of a delegation comprising some leading US Senators that visited Bangalore recently told Business Standard that the way India was churning out over 200,000 engineering graduates every year, while at the same time maintaining quality, really baffled them.

Science Education in the USA, Japan…

Press release from the US Department of Education: U.S. Science Lessons Focus More on Activities, Less on Content, Study Shows

A video study of 8th-grade science classrooms in the United States and four other countries found U.S. teachers focused on a variety of activities to engage students but not in a consistent way that developed coherent and challenging science content.

In comparison, classrooms in Australia, the Czech Republic, Japan, and the Netherlands exposed 8th graders to science lessons characterized by a core instructional approach that held students to high content standards and expectations for student learning.

The National Center for Education Statistics in the U.S. Department of Education’s Institute of Education Sciences today released these and other findings in a report titled Teaching Science in Five Countries: Results From the TIMSS 1999 Video Study that draws on analysis of 439 randomly selected videotaped classroom lessons in the participating countries.

The results of the newly released science study highlight variations across the countries in how science lessons are organized, how the science content is developed for the students, and how the students participate in actively doing science work.

For example, in Japan, the lessons emphasized identifying patterns in data and making connections among ideas and evidence. Australian lessons developed basic science content ideas through inquiry. Whereas in the Netherlands, independent student learning is given priority. Dutch students often kept track of a long-term set of assignments, checking their work in a class answer book as they proceeded independently.

In the Czech Republic, students were held accountable for mastering challenging and often theoretical science content in front of their peers through class discussions, work at the blackboard, and oral quizzes.

In the United States, lessons kept students busy on a variety of activities such as hands-on work, small group discussions, and other “motivational” activities such as games, role-playing, physical movement, and puzzles. The various activities, however, were not typically connected to the development of science content ideas. More than a quarter of the U.S. lessons were focused almost completely on carrying out the activity as opposed to learning a specific idea.

The science report is the second released by TIMSS 1999 Video Study. The first report, focused on 8th grade mathematics teaching, was released in 2003.

To view the reports and for more information: Trends in International Mathematics and Science Study

via: Study suggests U.S. science teaching falls short on content

National Conference on Service Learning in Engineering

National Conference on Service Learning in Engineering

Service learning is a rapidly growing pedagogy in engineering, technology and computing that actively engages students in real problems in local and global communities. Research has shown that service learning enhances learning of classroom content. Research and active programs indicate that the community context can help address the under representation of our student populations. This conference will bring leaders from education, industry and government together with service learning practitioners to identify how to capitalize on the current momentum and to maximize its impact.

May 24th and 25th, 2006, National Academy of Engineering, Washington, DC. There is no charge to attend but space is limited.

Singapore woos top scientists with new labs

Singapore woos top scientists with new labs, research money by Paul Elias:

Singapore’s siren song is growing increasingly more irresistible for scientists, especially stem cell researchers who feel stifled by the U.S. government’s restrictions on their field.

Two prominent California scientists are the latest to defect to the Asian city-state, announcing earlier this month that they, too, had fallen for its glittering acres of new laboratories outfitted with the latest gizmos.

They weren’t the first defections, and Singapore officials at the Biotechnology Organization’s annual convention in Chicago this week promise they won’t be the last.

Other Asian countries, including Japan, South Korea and even China, are also here touting their burgeoning biotechnology spending to the 20,000 scientists and biotechnology executives attending the conference.

In all, the country has managed to recruit about 50 senior scientists — far short of what it needs, but a start for a tiny country of 4.5 million people off the tip of Malaysia.

Another 1,800 younger scientists from all corners of the world staff the Biopolis laboratories, which were built with $290 million in government funding and another $400 million in private investment by the two dozen biotechnology companies based there. Biopolis opened in 2003 and contains seven buildings spread over 10 acres and connected by sky bridges

Great Moonbuggy Race

Moon Buggy Race Vehicle

Great Moonbuggy Race – Huntsville Center for Technology High School and Pittsburg State University win their divisions.

The two winning teams were among 33 that raced their original moonbuggy designs across a half-mile simulated lunar surface at the U.S. Space & Rocket Center in Huntsville April 7-8.

More from the NASA education site

Previous posts about science fairs, engineering challenges, science competitions, etc.

Sports Engineering

Wind Tunnel at MIT for sports testing

MIT is not the first school to come to mind when discussing athletics. However, the MIT Center for Sports Innovation (CSI) is making news. The CSI mission is to expand the students’ learning experience by involving them in the development of sports technology and products.

One project at the Center is a wind tunnel used for bicycle testing:

The design and construction of the bike test stand was Brian Hoying’s senior thesis project. The data acquisition software upgrade was Mark Cote’s freshman term project. The resulting test system was deemed “the best cycling test system I’ve ever seen” by Phil White, owner of Cervélo Cycles, and sponsor of the CSC professional cycling team.

It is great to see student projects with such success.

Mark Cote, a researcher at the MIT Center for Sports Innovation, has an impressive list of clients — from Tour de France stage winners to some of North America’s leading bicycle manufacturers. Now the wind tunnel specialist plans to use his expertise in fluid dynamics to develop and, he hopes, patent his own advances in aerodynamic cycling gear.

Not bad, considering that Cote, 21, is still an undergraduate.

Companies Hunting for Engineers to Fill New Jobs

Increase in work has companies hunting for engineers by Molly McMillin:

In 2007, Airbus’ North America Engineering Center in Wichita must hire an additional 150 engineers because of new work it is getting. Bill Greer, Airbus North America’s vice president and general manager, said he will hire as many engineers locally as he can for the wing design center, which now employs 207 engineers.

But if he can’t find enough high-quality, experienced engineers in Wichita, Greer said he will contract with engineering companies outside Kansas.

Cessna Aircraft hired 150 engineers last year and plans to hire 100 to 120 more in 2006.

Raytheon Aircraft expects to add more than 100 engineers in the next year.

Right now, both say they are finding the engineers they need.

WSU, which has 155 to 160 engineering graduates in a year, is not graduating all the engineers Wichita needs, Toro-Ramos said.

Those who are graduating are getting multiple offers of employment, she said.

Nobel Laureate Discusses Protein Power

Nobel Laureate discusses protein power – Podcast

Nobel Laureate Professor Robert Huber visited the The University of Queensland – Brisbane to discuss the future of biomedicine.

He presented the studies that earned him the Nobel Prize for Chemistry in 1988 and discussed the future of protein crystallography to reduce several diseases such as influenza and cancer.

Nobel Prize