Healthy Diet, Healthy Living, Healthy Weight

Living and eating healthily is tricky but not entirely confusing. The whole area of eating healthy food and what is a healthy weight is one where the scientific inquiry process and the complexity of scientific research on what is healthy for us is clear. Scientists study various issues and learn things but creating simple rules has proven difficult. Different studies seem to show benefits of contradictory advice, advice once seen as wise is now seen as wrong…

This is an area I am far from knowledgable about. Still I try to pay some attention as I like being healthy. Being sick is the quickest way to appreciate how great it is to be healthy. From various things I have skimmed it seems there is more evidence from several studies about how difficult it is to lose weight. Our bodies seem to work against our efforts.

And this, it seems to me, makes the problem of increasing childhood and teen obesity even more important to deal with as soon as issues arise.

It seems to me the most important thing to take from this, is the importance of maintaining a healthy weight: since you can’t just easily make up for a bad year of weight gain. I am not sure why I haven’t seen this note in most of what I have read – I suspect it is our reluctance to make value judgements about what is healthy. The problem I see with that is, the best advice we have is confusing enough without people with more knowledge being reluctant to state their best advice given the current knowledge. That doesn’t mean the suggestions are right, but at least they are educated guesses.

I try to eat relatively healthily. Which for me means taking steps to increase the amount of vegetables I eat (especially greens and some fiber) and decrease the amount of sweets and heavily processed food I eat (I still eat way too much heavily processed food). And I try to exercise as it seems to have many benefits including helping make up for some weaknesses in your diet (like eating too many calories and too many “empty calories). In my opinion (which on this topic may well not be worth much) eating a bit more stuff that really isn’t so good for you and exercising more is an easier tradeoff than trying to eat perfectly and do the minimum amount of exercise needed to stay healthy.

I also eat yogurt – I like it and the beneficial benefits of some bacteria seems likely. I heard recently something that surprised me which is that the beneficial bacteria remain for close to 2 weeks. I figured they would be gone in a couple days. I only heard that from one source (I can’t remember now but some seemingly knowledgable source – scientist researching the area), so it might not be accurate but it was interesting.

Here is an example of one of these health studies. They find that a low protein diet resulted in a loss of “lean weight” (muscle…) and more fat than a comparable diet with more protein. The same weight with a higher percentage of fat is not a good thing for human health. Thus the message is that a lower protein diet has this risk that must be considered (and therefor higher protein diets may well be wise). Of course things get much more complicated than that when we actually try to live by a diet.

Effect of Dietary Protein Content on Weight Gain, Energy Expenditure, and Body Composition During Overeating

Continue reading

Popular Curious Cat Science and Engineering Blog Posts

Here I include a list of some of the most popular posts from my blog in the last year. I hope you enjoy them. Only one post was written in 2011. Many of my older posts are consistently popular, while some have huge spikes for a day or two when they are popular on some social site (Reddit, Facebook, Twitter, Google+…). For posts that get huge spikes it isn’t uncommon for that pattern to repeat occasionally. I must have been doing something right in 2008 (based on how many of my popular post are from 2008). I’ll try to repeat that in 2012.

Photo of kids intently studying on a Malaysian beach

My mom with a group of Malaysia kids apparently intent on learning something. I am there, but not visible in this photo. Photo by my father.

Remote Presence Robot

Anybots allow remote presence today. They can be rented for just $600 a month. You can purchase your own for just $15,000.

The newest version, just unveiled at a CES has a much bigger screen (which seems very wise to me).

This is another example of robots making it into real use. While I am sure few workplaces are ready for this jump today, 10 or 20 years from now a telepresence robot (that can do much more) is likely I think to be significantly used. Not only will functionality increase, prices will drop dramatically: as the wonderful combination so often happens with technology. There is a great deal of effort going into making commercial viable “personal” robots. I think these efforts will make significant inroads in the next 10-20 years.

My old office wouldn’t have been willing to pay $15,000 but one of our developers looked into creating his own (after he moved and was working remotely). He hasn’t quite gotten it done yet, but may at some point.

Related: Managing By Rolling Around (I like how the robot owner used the robot to have his mother attend his wedding (and dressed up the robot) – Robot Finds Lost Shoppers and Provides DirectionsNew Yorkers Help Robot Find Its Way in the Big CityToyota Partner Robots

Memory is Stored by Turning on Genes in Neurons (to Alter Connection Between Neurons)

I find these kind of stories so interesting. I really have so little understanding of genes. I knew memory had something to do with altering connections between neurons. I had no idea that required turning on many genes in those neurons. Life really is amazing.

Neuroscientists identify a master controller of memory

When you experience a new event, your brain encodes a memory of it by altering the connections between neurons. This requires turning on many genes in those neurons.

Lin and her colleagues found that Npas4 turns on a series of other genes that modify the brain’s internal wiring by adjusting the strength of synapses, or connections between neurons. “This is a gene that can connect from experience to the eventual changing of the circuit,” says [Yingxi] Lin

So far, the researchers have identified only a few of the genes regulated by Npas4, but they suspect there could be hundreds more. Npas4 is a transcription factor, meaning it controls the copying of other genes into messenger RNA — the genetic material that carries protein-building instructions from the nucleus to the rest of the cell. The MIT experiments showed that Npas4 binds to the activation sites of specific genes and directs an enzyme called RNA polymerase II to start copying them.

“Npas4 is providing this instructive signal,” Ramamoorthi says. “It’s telling the polymerase to land at certain genes, and without it, the polymerase doesn’t know where to go. It’s just floating around in the nucleus.”

When the researchers knocked out the gene for Npas4, they found that mice could not remember their fearful conditioning. They also found that this effect could be produced by knocking out the gene just in the CA3 region of the hippocampus. Knocking it out in other parts of the hippocampus, however, had no effect.

One of the things I aim to do in 2012 is read a few more books on biology and genes. I find it incredible what are genes actually are doing to allow us to live our lives. And I am also very ignorant on the whole area. So hopefully I can have some fun next year learning about it.

Related: Epigenetic Effects on DNA from Living Conditions in Childhood Persist Well Into Middle AgeAntigen Shift in Influenza Viruses8 Percent of the Human Genome is Old Virus GenesBrain Reorganizes As It Learns Math

Brian Cox – Lecture on Science and Quantum Mechanics

Brian Cox gave a wonderful lecture at the Royal Institution of Great Britain. This is one more great thing the internet makes possible: have great fun while you learn. Enjoy.

With the help of Jonathan Ross, Simon Pegg, Sarah Millican and James May, Brian shows how diamonds – the hardest material in nature – are made up of nothingness; how things can be in an infinite number of places at once; why everything we see or touch in the universe exists; and how a diamond in the heart of London is in communication with the largest diamond in the cosmos.

Related: Quantum Mechanics Made Relatively Simple Podcasts by Hana BetheBrian Cox Particle Physics WebcastPhysicists Observe New Property of Matter

Nice Interaction with a Group of Wild Mountain Gorillas Strolling Through Camp

An amazing encounter with a troop of wild mountain gorillas near Bwindi Impenetrable National Park, Uganda. The reality is that these many natural environments will be maintained only with economic incentives. A certain amount of wilderness can be maintained with economic support from outside (government, charity…). But reasonable accommodations to find ways to make retaining natural wonders economically viable are likely a key to saving much of these environments for the future. Unfortunately there are big incentives to destroy nature from those rich tourists who don’t follow the rules and push their guides to break the rules (guides often do this as they have seen great monetary rewards [in tips] for breaking the rules (bothering animals, going too close, going to off limits areas…). It is sad how often tourists at national parks show utter disregard for nature and preserving things for later generations.

It seems like this video wasn’t about that type of behavior though. Instead it is just an example of how cool nature can be at times. Animals are not quite as predictable as some believe. Like this group that wandered into the camp (as they do a couple times a year) animals often stray from their normal behavior.

Providing good jobs and sharing revenue from tourists with local residents (paying for schools…) is a very good way to encourage residents to support natural heritage sites. This is true in Africa and also near park in the United States, or anywhere else. Here is an example of an organization doing that: Conservation Through Public Health.

I am a huge fan of tying in economic benefits to natural parks and resources. I think this is part of making them not environmentally sustainable but economically sustainable. If the areas do not make a contribution to the economic well being of those living there, there is a danger the land will be tapped for uses that will damage their natural heritage value. We do have to be careful as often these economic interests can turn into greedy people just wanting whatever they can get now (I am saddened by how often tourists behave in this way at natural wonders).

People are going to determine how land is used. We can hope that purely altruistic motives will result in long preserved natural habitats. But I don’t think that hope is as sustainable as creating a situation where it is also in people’s economic interests to maintain the environments. A combination of altruistic, long term thinking and economic interest is more likely to preserve natural environment (in my opinion).

Related: Massive Western Lowland Gorilla Population in Northern Republic of CongoGrauer’s Gorilla (Eastern Lowlands Gorilla)African Parks (a business approach to conservation)Travel photos from National Parks

Christian Science Monitor Scientific Literacy Quiz

This is a nice science quiz that you should learn from while taking it (unless you are extremely knowledgeable already and know every answer).

It is multiple choice, and even on some I got right, I wasn’t completely sure between two choices for example (What is the heaviest noble gas?). I managed to guess pretty well but also missed a couple.

It has one hugely annoying usability failure: after answering the question it loads a new page with the right answer and you have to click again to get the next question. Doing this for 50 questions is extremely tiresome and pointless. They correct answer could be shown at the top and also show the next question.

Some questions in the quiz:

  1. Newton’s First Law of Motion describes what phenomenon?
  2. What word, which comes from a Greek term meaning “good kernel,” describes an organism whose cells contain chromosomes inside a nucleus bounded by a membrane, as distinguished from bacterial forms of life?
  3. DNA contains adenine, cytosine, guanine, and what other nucleotide base, which is not found in RNA? (I had no idea on this one)
  4. What term describes the single initial cell of a new organism that has been produced by means of sexual reproduction?
  5. What term for an elementary particle and a fundamental constituent of matter gets its name from a line in James Joyce’s 1939 novel “Finnegans Wake”?

I managed to get 39 right, which honestly include lots of educated guesses and lucky guesses. It almost seemed the test was 30% on your ability to translate Greek or Latin. Overall I think it was difficult and I was lucky to get 39 right. It would be nice to show participant results like an earlier Science Knowledge Quiz did. Percentage getting each question would be interesting too, along with the distribution of answers.

They do provide all your answers (and the correct answers) on one page once you finish (with is a nice usability touch).

Related: Nearly Half of Adults in the USA Don’t Know How Long it Takes the Earth to Circle the SunTen Things Everyone Should Know About ScienceUnderstanding the Evolution of Human Beings by Country

Can Just A Few Minute of Exercise a Day Prevent Diabetes?

That just 1 minute of exercise a day could help prevent diabetes seems to good to be true. But research at the University of Bath indicates it might be true. I am a bit of a soft touch for seeing the benefits of exercise. And I also love health care that focuses on achieving healthy lives instead of what most of the spending focuses on: treating illness.

Performing short cycle sprints three times a week could be enough to prevent and possibly treat Type 2 diabetes researchers at the University of Bath believe.

Volunteers were asked to perform two 20-second cycle sprints, three times per week (but really this works out to under 10 minutes of total time including warm up). After six weeks researchers saw a 28% improvement in their insulin function. Type 2 diabetes occurs when blood sugar levels build up to dangerously high levels due to reduced insulin function, often caused by a sedentary lifestyle. The condition can cause life-threatening complications to the heart, kidneys, eyes and limbs, and has huge costs (monetarily and to people’s lives).

Regular exercise can help keep blood sugar levels low but busy lifestyles and lack of motivation mean 66% of the population is not getting the recommended five 30-minute sessions of moderate exercise a week.

Dr Niels Vollaard who is leading the study, said: “Our muscles have sugar stores, called glycogen, for use during exercise. To restock these after exercise the muscle needs to take up sugar from the blood. In inactive people there is less need for the muscles to do this, which can lead to poor sensitivity to insulin, high blood sugar levels, and eventually type 2 diabetes… We already knew that very intense sprint training can improve insulin sensitivity but we wanted to see if the exercise sessions could be made easier and shorter.”

In the study the resistance on the exercise bikes could be rapidly increased so volunteers were able to briefly exercise at much higher intensities than they would otherwise be able to achieve. With an undemanding warm-up and cool-down the total time of each session was only 10 minutes.

This type of study is very helpful in identifying solutions that will allow more people to lead healthy lives and save our economies large amount of money. Medical studies can’t be accepted on face value. They are often not confirmed by future studies and therefore it is unwise to rely on the results of 1 study. The results provide interesting information but need to be confirmed (and in the area of studies on human health this has been shown to be problematic – are health is quite a tricky area to study).

Related: Aerobic Exercise Plus Resistance Training Helps Control Type 2 DiabetesRegular Exercise Reduces FatigueFood Rules: An Eater’s Manual

Continue reading

Using a Virus to Improve Solar-cell Efficiency Over 30%

Solar and wind energy are making great strides, and are already contributing significantly to providing relatively clean energy.

Researchers at MIT have found a way to make significant improvements to the power-conversion efficiency of solar cells by enlisting the services of tiny viruses to perform detailed assembly work at the microscopic level.

In a solar cell, sunlight hits a light-harvesting material, causing it to release electrons that can be harnessed to produce an electric current. The research, is based on findings that carbon nanotubes — microscopic, hollow cylinders of pure carbon — can enhance the efficiency of electron collection from a solar cell’s surface.

Previous attempts to use the nanotubes, however, had been thwarted by two problems. First, the making of carbon nanotubes generally produces a mix of two types, some of which act as semiconductors (sometimes allowing an electric current to flow, sometimes not) or metals (which act like wires, allowing current to flow easily). The new research, for the first time, showed that the effects of these two types tend to be different, because the semiconducting nanotubes can enhance the performance of solar cells, but the metallic ones have the opposite effect. Second, nanotubes tend to clump together, which reduces their effectiveness.

And that’s where viruses come to the rescue. Graduate students Xiangnan Dang and Hyunjung Yi — working with Angela Belcher, the W. M. Keck Professor of Energy, and several other researchers — found that a genetically engineered version of a virus called M13, which normally infects bacteria, can be used to control the arrangement of the nanotubes on a surface, keeping the tubes separate so they can’t short out the circuits, and keeping the tubes apart so they don’t clump.

The system the researchers tested used a type of solar cell known as dye-sensitized solar cells, a lightweight and inexpensive type where the active layer is composed of titanium dioxide, rather than the silicon used in conventional solar cells. But the same technique could be applied to other types as well, including quantum-dot and organic solar cells, the researchers say. In their tests, adding the virus-built structures enhanced the power conversion efficiency to 10.6% from 8% — almost a one-third improvement.

Read the full press release

Related: Using Virus to Build BatteriesUsing Viruses to Construct ElectrodesUsing Bacteria to Carry Nanoparticles Into Cells