Rats Show Empathy-driven Behavior

Rats free trapped companions, even when given choice of chocolate instead

The experiments, designed by psychology graduate student and first author Inbal Ben-Ami Bartal with co-authors Decety and Peggy Mason, placed two rats that normally share a cage into a special test arena. One rat was held in a restrainer device — a closed tube with a door that can be nudged open from the outside. The second rat roamed free in the cage around the restrainer, able to see and hear the trapped cagemate but not required to take action.

The researchers observed that the free rat acted more agitated when its cagemate was restrained, compared to its activity when the rat was placed in a cage with an empty restrainer. This response offered evidence of an “emotional contagion,” a frequently observed phenomenon in humans and animals in which a subject shares in the fear, distress or even pain suffered by another subject.

While emotional contagion is the simplest form of empathy, the rats’ subsequent actions clearly comprised active helping behavior, a far more complex expression of empathy. After several daily restraint sessions, the free rat learned how to open the restrainer door and free its cagemate. Though slow to act at first, once the rat discovered the ability to free its companion, it would take action almost immediately upon placement in the test arena.

“We are not training these rats in any way,” Bartal said. “These rats are learning because they are motivated by something internal. We’re not showing them how to open the door, they don’t get any previous exposure on opening the door, and it’s hard to open the door. But they keep trying and trying, and it eventually works.”

To control for motivations other than empathy that would lead the rat to free its companion, the researchers conducted further experiments. When a stuffed toy rat was placed in the restrainer, the free rat did not open the door. When opening the restrainer door released his companion into a separate compartment, the free rat continued to nudge open the door, ruling out the reward of social interaction as motivation. The experiments left behavior motivated by empathy as the simplest explanation for the rats’ behavior.

“There was no other reason to take this action, except to terminate the distress of the trapped rats,” Bartal said. “In the rat model world, seeing the same behavior repeated over and over basically means that this action is rewarding to the rat.”

As a test of the power of this reward, another experiment was designed to give the free rats a choice: free their companion or feast on chocolate. Two restrainers were placed in the cage with the rat, one containing the cagemate, another containing a pile of chocolate chips. Though the free rat had the option of eating all the chocolate before freeing its companion, the rat was equally likely to open the restrainer containing the cagemate before opening the chocolate container.

“That was very compelling,” said Mason, Professor in Neurobiology. “It said to us that essentially helping their cagemate is on a par with chocolate. He can hog the entire chocolate stash if he wanted to, and he does not. We were shocked.”

Now that this model of empathic behavior has been established, the researchers are carrying out additional experiments. Because not every rat learned to open the door and free its companion, studies can compare these individuals to look for the biological source of these behavioral differences. Early results suggested that females were more likely to become door openers than males, perhaps reflecting the important role of empathy in motherhood and providing another avenue for study…

Interesting study. My guess is this is the kind of thing those that don’t like science would deride. I believe in the value of science. I believe in the value of learning. I believe that such experiments are what drives science forward. I believe if you want your economy to benefit from investing in science you should be encouraging hundreds and thousands of such experiments. Funding for this study was provided by The National Science Foundation (NSF), and others.

I am thankful that more and more countries are willing to invest in science, especially since the USA is showing an increasing anti-science attitude. I would rather the USA continue to believe in the value of science and other countries looked to increase investments. But, it is much better that other countries increase their interest in science, and willingness to invest in science, to more than make up for the USA’s decisions to reduce the appreciation for science than for the world to just lose do to a decrease in investments in science.

Related: Insightful Problem Solving in an Asian ElephantPigeon Solves Box and Banana ProblemStand with ScienceEliminating NSF Program to Aid K-12 Science EducationThe Importance of Science Education

Toyota Scion iQ: 37 MPG

I posted on the Toyota iQ a few years ago. It has been successful in Europe for several years and is now available in the USA also as the Scion iQ. Sadly it only gets 37 miles per gallon (the same for city and highway, as it is optimized for city driving). The earlier post discussed the Toyota iQ diesel which achieved 59 MPG (now the UK Toyota sites quotes 64 MPG).

The UK gallon (the imperial gallon) is 1.2 USA gallons – why are we not using the metric system yet 🙁 37 MPG would be the highest yield, for a non-hybrid, in the USA, still it is disappointing when compared to the diesel Toyota iQ figures (64 imperial MPG equates to 53 USA mpg).

The base price for the Scion iQ is $15,595. The car is obviously built for city driving: the small size makes it great for finding parking and navigating small streets.

A fully electric Toyota iQ is being planned for 2012 that can be recharged by 4 hours with a normal electric plug. It can be 80% recharged in 15 minutes with a special adapter. It will have a range of about 65 miles.

I really like the management of Toyota and own stock in Toyota.

On another front, sadly, the company behind the aptera concept car (230 MPG) announced they were closing down.

Related: Companies Sharing Engineering Resources Across the GlobeBigger Impact: 15 to 18 mpg or 50 to 100 mpg?Global Installed Wind Power Now Over 1.5% of Global Electricity Demand

Underwater Pedestrian Bridge

photo of a 'bridge' parting the waters to allow pedestrian to pass

The Dutch water line was a series of water based defenses conceived by Maurice of Nassau in the early 17th century, and completed by his half brother Frederick Henry. Combined with natural bodies of water. The line could be used to protect the economic heartland of the Dutch Republic behind difficult to cross water barriers, when in danger.

The Fort de Roovere was part of this defense. In 2010 the fort was renovated and the moat revived with a small extra bit of engineering: a sunken pedestrian “bridge.” Where once engineers used ingenuity to use water to keep people out, now engineers used wood to let people experience the moat while still reaching the fort.

via: Sunken Pedestrian Bridge in the Netherlands Parts Moat Waters Like Moses!

Related: Monitor-Merrimac Memorial Bridge-TunnelMonkey BridgeQuantum Teleportation

Companies Sharing Engineering Resources Across the Globe

Swapping batteries for diesel engines

Car companies, like aircraft manufacturers, are sharing engineering skills across borders to speed up and cut the costs of technological development. It happened with Boeing’s 787 Dreamliner. The American aircraft maker outsourced some of the engineering to Japanese suppliers, admitting that it does not have all the necessary expertise. Likewise, Toyota has agreed to work on hybrid trucks with Ford, and electric vehicles with Tesla, the Silicon Valley sports-car maker. BMW is working on improving the current generation of lithium-ion batteries with France’s Peugeot Citroën. Nissan, as well as joining forces with Renault, has joint projects with Daimler.

There are many reasons to pursue such efforts (as well as drawbacks). My belief is companies would rather not take on the complications of such partnerships but the advantages overcome those desires. The high cost of research into these efforts is a big part of what pushes such collaboration. Also once a company has success they often can build up quite an advantage. The costs of trying to engineer a different solution (that doesn’t violate someone’s patents) often makes buying that technology or partnering attractive.

I really like this webcast, from 2008, on Toyota’s engineering development program.

Related: Wave Disk Engine Could Increase Efficiency 5 Times59 MPG Toyota iQ Diesel Available in Europe (2008)Toyota Cultivating Engineering Talent

Stand with Science – Late is Better than Never

The USA public has made very bad decisions in who to send to Washington DC to spend our money (and the money of our children and grandchildren). We have wasted hundreds of billions that could have been spent more wisely. I happen to think investing in science and engineering is important for a societies economic health. The problem the USA has is we have chosen to waste lots of money for decades, at some point you run out of money (yes the USA government doesn’t really, as they can print it, but essentially they do – in practical terms).

I would certainly eliminate tax breaks for trust fund babies and trust fund grandchildren (while your grandchildren are going to be left holding the bag for the spending those elected by us, the grandchildren of the rich often get huge trust funds with no taxes being paid at all). But most of the people we have elected want to give trust fund babies huge payoffs. I would cut much spending in government – spending 5% less in 2020 than we did this year would be fine with me. But we don’t elect people that support that. I would support not adding new extensions to tax cuts sold with false claims and again supported by those we continue to elect. I wouldn’t allow the financial industry subverting of markets. But again we elect people that do allow that. And when the bill comes due for letting them take tens and hundreds of millions in individual profits in the good years, we can either let the economy go into a depression (maybe) or spend hundreds of billions to trillions bailing out those institutions our politicians let threaten the economy.

It might not seem fair, but there are consequences to allowing our political system to waste huge amounts of money paying of special interests for decades. And investing in science and engineering has been a casualty and will likely continue to be. Eventually you run out of money, even for the stuff that matters. Trying to fight for politicians that will put the interests of the country ahead of their donors is not something you can do effectively only when your interests are directly threatened. At that point things may already be too bad to be saved.

I have been writing about the failed political system for quite awhile now. I wrote awhile back that Hillary Clinton’s idea to tripple the number of GRFP awards was something I thought was very smart economically. But even then I questioned if we could afford it, if we refused to do anything else different (just adding new spending isn’t what the country needed).

Even in the state the politicians we continue to elect (we elect the same people election after election – there is no confusion about what they will do) we can debate what to cut and for something we spend so little on as investing science and engineering we can even easily increase that spending and not have any real impact on cutting overall spending. But those we have elected don’t show much interest in investing in science and engineering overall.

The USA continues to invest a good deal in science and engineering. But the difference in focus today versus the 1960’s is dramatic. The USA will continue to do well in the realm of science. The advantages gained over decades leave us in a hugely beneficial position – and one that takes other countries decades to catch up to. Now some countries have been working on that for decades now, and are doing very well. China, hasn’t been at it quite as long but has been making amazingly fast progress (similar to the amazing economic story).

Continue reading

Robot Prison Guards in South Korea

photo of robot prison guard

Robotic prison wardens to patrol South Korean prison

The one-month trial will cost 1bn won (£554,000) and is being sponsored by the South Korean government. It is the latest in a series of investments made by the state to develop its robotics industry.

The country’s Ministry of Knowledge Economy said in January that it had spent the equivalent of £415m on research in the sector between 2002 and 2010. It said the aim was to compete with other countries, such as Japan, which are also exploring the industry’s potential.

In October the ministry said the Korean robot market had recorded 75% growth over the past two years and was now worth about £1 billion…

The potential market for robotics is huge. Smart countries are investing in becoming the centers for excellence in that area. Japan and South Korea may well be in the lead. The USA, Germany and China also have strong communities.

Related: Robot Finds Lost Shoppers and Provides DirectionsThe Robotic Dog (2008 post)Soft Morphing Robot FutureHonda’s Robolegs Help People WalkRoachbot: Cockroach Controlled Robot

Friday Fun: Octopus Walks on Land

Just a fun video for your Friday. Octopuses are really very cool. Not quite as cool as cats but way up there in the realm of cool animals. Octopuses, octopi and octopodes are all acceptable words for plural of octopus?

A few year ago (2008) I posted about another very cool octopus, who liked to juggling fellow aquarium occupants.

I think I will devote more time to learning about octopuses and posting more about them.

Related: Hydromedusae, Siphonophora, Cnidarians, CtenophoresCritter Cam: Sea Lion versus OctopusRed octopus at a brine lake beneath the sea

YouTube SpaceLab Experiment Competition

YouTube SpaceLab is an open competition inviting 14 – 18 year olds (anywhere in the world) to create an idea for a science experiment in space. You don’t have to actually do the experiment, you just have to record yourself explaining it.

Entries must have be submitted on YouTube by 07:59 GMT on December 8th.

The winning experiments will be conducted on the International Space Station (ISS) and beamed live on YouTube for the whole planet to see.

Winners get the choice to either watch the rocket blast off with your idea on it in Japan or take a specially tailored astronaut training course in Russia when you turn 18. There are other amazing prizes for the runners-up too.

Here is an example entry from 3 students in UK on an experiment to learn about quorum sensing by bacteria in the micro gravity of space.

Related: Google Science Fair 2011 ProjectsBacteria Communicate Using a Chemical Language (quorum sensing)11 Year Old Using Design of ExperimentsResearch by group of 8 to 10 Year Olds Published in Royal Society Journal

Nature Uses Stem Cells from Fetus to Repair Health of Mother

Science shows us so many amazing things. Scientists have learned mice use stem cells from the fetus to repair damage to the mother in the event of things like heart attacks. And there is evidence people do the same thing. Very cool. Nature beat us to the idea of using stem cells to treat health problems.

Helpful Mouse Fetuses Naturally Send Stem Cells to Mom to Fix Her Damaged Heart

When the scientists examined the female mice’s heart tissue two weeks after the heart attacks, they found lots of glowing green tissue—cells that came from the fetus—in the mom’s heart. Mice who had heart attacks had eight times as many cells from the fetus in their hearts as mice who hadn’t had a heart attack did, meaning the high volume of fetal cells was a response to the heart attack.

What’s more, the embryo’s stem cells had differentiated into various types of heart tissue, including cardiomyocytes, the rhythmically contracting muscle cells that produce a heartbeat.

The hearts of two women who suffered from severe heart weakness were later found to contain cells derived from the cells of a male fetus years after they gave birth to their sons.

The same thing seems to hold true for other organs. When pregnant women have damage in other organs, including the brain, lung, and liver, earlier studies have shown, fetal cells show up there, too.

It makes sense for a fetus to try and aid the mother but it is amazing the evolution found such solutions. Given how many challenges the fetus creates for the mother giving some benefits can help increase the odds of a health birth.

Related: Researchers Explain How Rotifers Thrive Despite Forgoing SexMaking Embryonic Stem CellsStructure and Function of RibosomeWhy People Often Get Sicker When They’re Stressed

I was Interviewed About Encouraging Kids to Pursue Engineering

Amanda Moreno interviewed me about Encouraging Kids to Pursue Engineering over on the Knovel Blog.

What can parents do to cultivate an interest in science in their kids early on?

John Hunter: Ask questions. Answer questions. Explain how things work. Explain why things are done the way they are. Kids want the attention of their parents, and when they are younger they are constantly trying to get it (dad look, mom look, watch me!). They have similar feelings when they are older, but are not as forthright about saying what they want. If you take a sincere interest in their questions, you’ll motivate them to continue pondering how the world works. Make it fun to learn. Kids have an intrinsic motivation to learn. Keeping their curiosity alive is the first step.

So, on the university level, professors generally aren’t student-centric enough. What other factors are discouraging students in the classroom?

JH: I have one belief that is close to heresy. I don’t see why publication has to be so important for professors (if what we are after is good teachers, not authors). …

Read the rest of the interview.

Related: Backyard Wildlife: Sharpshinned HawkQubits Construction ToyWhat Kids can Learn By PlayingEncouraging Curiosity in Kids