Grauer’s Gorilla (Eastern Lowlands Gorilla)

The Grauer’s Gorilla (Eastern Lowlands Gorilla) is closely related to the endangered mountain gorilla and is found in the Congo. The eastern lowland gorilla is actually the largest gorilla; males can weigh over 500 pounds. As you can guess from the name, these gorilla’s prefer lowlands to the mountains.

Sadly the eastern lowland gorilla wild population is estimated to have fallen below 8,000 due to warfare (intruding on their territory), agriculture, mining, logging and hunting gorilla’s for meat. The Wildlife Conservation Society is helping preserve habitat for these wonderful creatures.

Related: Massive Western Lowland Gorilla Population in Northern Republic of CongoSavanna Chimpanzees Hunt with ToolsOrangutan Attempts to Hunt Fish with SpearInsightful Problem Solving in an Asian Elephant

Schematics of Electronic Circuits

Reading circuit diagrams

Schematic diagrams are made up of two things: symbols that represent the components in the circuit, and lines that represent the connections between them.

If a line runs between components, it means that they are connected, period, and it tells you nothing else. The connection can be a wire, a copper trace, a plug-socket connection, a metal chassis, or anything else that electricity will run through without much resistance. Messy details like wire or cable specifications and routing, if they are important for a project, belong elsewhere in its documentation. The length of a line also has nothing to do with the connection’s actual distance in real life. Schematics are drawn (ideally) to be clear and simple, with components and connections arranged on the page to minimize clutter, not to represent how they might be placed on a circuit board.

The video and the article give you a good start on understanding schematics. There are 2 ways to show wires crossing in a schematic (the video shows one, the article shows both). Learning how to read a schematic gives you the ability to go many different directions with your home engineering efforts. Have fun.

Related: Arduino: Open Source Programmable HardwareEZ-Builder Robot Control SoftwareBuilding a Windmill to Generate Electricity by Reading and ExperimentingTeaching Through Tinkering

Apply to be an Astronaut

Are you looking to change jobs? NASA is seeking outstanding scientists, engineers (job announcement closed so broken link removed), and other talented professionals to carry forward the great discovery process that its mission demands. Creativity. Ambition. Teamwork. A sense of daring. Curiosity. That’s what it takes to join NASA, one of the best places to work in the Federal Government.

photo of astronaut's faceplate reflecting earth

The National Aeronautics and Space Administration (NASA) has a need for Astronaut Candidates to support the International Space Station Program and future deep space exploration activities.

In 1959 NASA selected its first group of 7 astronaut candidates. Since then 20 additional classes have been selected; bringing the total number of astronaut candidates to 330.

The astronauts of the 21st century will continue to work aboard the International Space Station in cooperation with our international partners; help to build and fly a new NASA vehicle, the Orion Multi-Purpose Crew Vehicle (MPCV) designed for human deep space exploration; and further NASA’s efforts to partner with industry to provide a commercial capability for space transportation to the space station.

NASA is in the process of identifying possible near-Earth asteroids to explore with the goal of visiting an asteroid in 2025. With that goal, and keeping in mind that the plan is to send a robotic precursor mission to the asteroid approximately five years before humans arrive, NASA will need to select the first set of targets to explore within the next decade.

Requirement include: Applicants for the Astronaut Candidate Program must meet the basic education requirements for NASA engineering and scientific positions, specifically: successful completion of standard professional curriculum in an accredited college or university leading to at least a bachelor’s degree with major study in an appropriate field of engineering, biological science, physical science, or mathematics.

Related: NASA Robotics AcademyNASA’s Mars Curiosity RoverAstronaut Drops a Hammer and Feather on the Moon

Continue reading

Russia Launches Mars Moon Probe

Russians launch Mars moon probe

Russia has launched an audacious bid to scoop up rock and dust samples from the Martian moon Phobos and bring them back to Earth for study.

Moscow has despatched a total of 16 missions to the Red Planet since the 1960s. None has successfully completed its goals, with the most recent endeavour – the sophisticated Mars-96 spacecraft – being destroyed in a failed launch.

Once on the surface, a robotic arm will pick up samples of the regolith (“soil”). Some of this material will be analysed there and then, but a portion of it – about 200g – will be transferred to a canister for return to Earth.

This canister and its departure stage should be sent home within a few days of Phobos-Grunt’s arrival on the moon. All being well, the canister should fall to Earth in the Kazakh desert in August 2014.

Potato-shaped Phobos is a fascinating target. Although it has been studied extensively by passing satellites, it still holds many secrets – not just about itself, but also the planet below.

The mission also is carrying a Chinese satellite that will be launched into orbit around Mars. This mission shows the future of space exploration. The USA continues to reduce the funding for space exploration while countries such as China are greatly increasing their funding.

I expect the leading space exploration will become much more global and the USA will take a less prominent role as the USA decides to spend funds elsewhere instead of scientific missions in space. Politicians in the USA have also stopped NASA from collaborating internationally which further reduces the USA role in the future of scientific research in space.

Russia seems to be making a new push to invest in space after a period of reduced funding. Russia’s economy still has many weaknesses, but in the last decade the oil wealth has provided some wealth and Russia is interested in using some of those funds for space exploration.

Update: This attempt failed also, making Russia 0 for 17 on Mars attempts. In the last few years Russia has shown a renewed interest in investing in space exploration. But their struggles show that it isn’t easy to in effect restart a program. Space exploration requires a great deal of very complex work. I hope they can get back on track and efforts in other countries also do well: China, Japan…

Related: NASA’s Mars Curiosity RoverMagnetic Portals Connect Sun and EarthGreat Astronaut Self Portrait

Dennis Hong, Virginia Tech Mechanical Engineering Professor, Leading Robotics Innovation

Dennis Hong is the U.S. star in humanoid robotics

Hong came by his interest in science naturally. He was born in 1971 on the exclusive Palos Verdes Peninsula, outside Los Angeles, and his father, Yong Shik Hong, worked as an aerospace engineer at the federally funded Aerospace Corp. The family returned to Seoul in 1974 so the elder Hong could lead South Korea’s short-range missile program, at the bidding of then-President Park Chung Hee.

Korean fathers of that era were strict and remote. Hong’s father was engaged and intellectually indulgent. He installed a work bench in Dennis’s room when he was 4, complete with a hammer and saw. He led the children in chemistry experiments and brought home model airplanes from America.

Dennis Hong built things with scraps of wood and metal and bits of plastic. He disassembled toys and stored the parts in a chest beneath his bed.

“We spent a lot of time building things and breaking things,” said Julie Hong, Hong’s older sister. “He was the one who broke things the most and built things the most.”

Hong traveled to America to complete his university study, following his father’s credo, “Big fish must swim in the big sea.” He earned a bachelor’s in mechanical engineering at the University of Wisconsin and a master’s and doctorate at Purdue.

Dennis’ success illustrates several themes repeated in posts on this blog: the USA attracting talent from overseas, kids curiosity and exposure to science and engineering leading to great things, the value of strong science and engineering programs and professors. Robotics continue to progress very quickly. The economic impact of robotics is large already (largely in manufacturing) and will continue to grow dramatically. Likely robots will find their way into much more diverse areas over the next 2 decades. The Robotics and Mechanisms Laboratory, lead by Dennis Hong, seems poised to play a big role in that future.

Related: Robocup 2010, Robot FootballSoft Morphing Robot FutureEvolution of Altruism in RobotsToyota Develops Thought-controlled Wheelchair

Continue reading

Cooking with Chemistry: Hard Candy

The video by Richard Hartel, professor of food engineering at the University of Wisconsin-Madison, demonstrates how the molten liquid candy cools to form what from a technical standpoint actually is a glass. Unlike window glass made of silica, this tasty glass is made of sugar.

Viscosity describes a fluid’s internal resistance to flow and may be thought of as a measure of fluid friction. Water has very little viscosity (unless it is frozen). Thick honey has higher viscosity (especially if it is cooler – I keep my honey in the fridge and it does not flow very quickly).

As I have said before if I had understood the chemistry behind cooking as a kid I think I would have been much more interested in cooking.

Related: Understanding the Chemistry Behind CookingThe Man Who Unboiled an EggTracking the Ecosystem Within Us

Encouraging Curiosity in Kids

How do you help make your children scientifically literate? I think the biggest thing you can do is encourage curiosity.

One way to encourage curiosity it is by answering their questions (and not saying: I am too busy, don’t bother me, don’t ask me?, stop asking why…). I know adults are busy and have all sorts of stuff we are trying to get done; and the question about why I need to wash my hands doesn’t seem worth answering. But I think anytime a kid is asking why is an opportunity to teach and encourage them to keep being curious.

It is very easy to shut off this curiosity, in our society anyway (we do it to the vast majority of people). The biggest difference I see between adults and kids is not maturity or responsibility but curiosity (or lack thereof in adults) and joy (versus adults who seem to be on valium all the time – maybe they are).

As they grow up kids will have lots of science and technology questions that you don’t know the answers to. If you want them to be curious and knowledgeable, put in the effort to find answers with them. You have to help them find the answers in a way that doesn’t turn them off. If you just say – go look it up yourself (which really they can do), maybe the 2% that are going to become scientists will. But most kids will just give up and turn off their curiosity a little bit more (until eventually it is almost gone and they are ready to fit into the adult world). Which is very sad.

Once you get them used to thinking and looking things up they will start to do this on their own. A lot of this just requires thinking (no need to look things up – once a certain base knowledge is achieved). But you need to set that pattern. And it would help if you were curious, thought and learned yourself.

Photo of kids intently studying on a Malaysian beach

My mom with a group of Malaysia kids apparently intent on learning something. I am there, but not visible in this photo. Photo by my father.

While walking in the park, see one of those things you are curious about and ask why does…? It is good to ask kids why and let them think about it and try and answer. Get them in the habit of asking why themselves. And in those cases when no-one knows, take some time and figure it out. Ask some questions (both for yourself – to guide your thinking – and to illustrate how to think about the question and figure things out). If you all can’t find an explanation yourselves, take some time to look it up. Then at dinner, tell everyone what you learned. This will be much more interesting to the kids than forcing them to elaborate on what they did today and help set the idea that curiosity is good and finding explanations is interesting.

It is fun as a kid if your parent is a scientist or engineer (my father was an engineering professor).

You often don’t notice traits about yourself. In the same what I know what red looks like to me, I figure we both see this red shirt you see the red that I do. But maybe you don’t. I tend to constantly be asking myself why. If I see something new (which is many, many times a day – unless I am trapped in some sad treadmill of sameness) I ask why is it that way and then try and answer. I think most of this goes on subconsciously or some barely conscious way. I actually had an example a few months ago when I was visiting home with my brother (who is pretty similar to me).

As we were driving, I had noticed some fairly tall poles that seemed to have really small solar panels on top. I then noticed they were space maybe 20 meters apart. Then saw that there seemed to be a asphalt path along the same line. I then decided, ok, they are probably solar panels to power a light for the path at night. Then my brother asked why are there those small solar panel on top of that pole?

Continue reading

Epigenetic Effects on DNA from Living Conditions in Childhood Persist Well Into Middle Age

Family living conditions in childhood are associated with significant effects in DNA that persist well into middle age, according to new research by Canadian and British scientists.

The team, based at McGill University in Montreal, University of British Columbia in Vancouver and the UCL Institute of Child Health in London looked for gene methylation associated with social and economic factors in early life. They found clear differences in gene methylation between those brought up in families with very high and very low standards of living. More than twice as many methylation differences were associated with the combined effect of the wealth, housing conditions and occupation of parents (that is, early upbringing) than were associated with the current socio-economic circumstances in adulthood. (1252 differences as opposed to 545).

I find Epigenetics to be a very interesting area. My basic understanding as I grew up was that you inherited your genes. But epigenetics explores how your genes change over time. This has been a very active area of research recently. Your DNA remains the same during your life. But the way those genes are expressed changes.

I don’t know of any research supporting the idea I mention in this example, but, to explain the concept in a simple way: you may carry genes in your DNA for processing food in different ways. If you have very limited diet the way your body reacts could be to express genes that specialize in maximizing the acquisition of nutrition from food. And it could be that your body sets these expressions based on your conditions when young; if later, your diet changes you may have set those genes to be expressed in a certain way. Again this is an example to try and explain the concept, not something where I know of research that supports evidence for this example.

The findings by these universities, were unfortunately published in a closed way. Universities should not support the closing of scientific knowledge. Several universities, that support open science, require open publication of scientific research. It is unfortunate some universities continue to support closed science.

The research could provide major evidence as to why the health disadvantages known to be associated with low socio-economic position can remain for life, despite later improvement in living conditions. The study set out to explore the way early life conditions might become ‘biologically-embedded’ and so continue to influence health, for better or worse, throughout life. The scientists decided to look at DNA methylation, a so-called epigenetic modification that is linked to enduring changes in gene activity and hence potential health risks. (Broadly, methylation of a gene at a significant point in the DNA reduces the activity of the gene.)

Related: DNA Passed to Descendants Changed by Your LifeBlack Raspberries Alter Hundreds of Genes Slowing CancerBreastfeeding Linked to More Intelligent Kids

Continue reading

Eliminating NSF Program to Aid K-12 Science Education

Changing American science and engineering education

In exchange for funding for their graduate studies, Kahler and other fellows contribute to the science curriculum in local primary and secondary schools from kindergarten through grade 12. Kahler taught science at Rogers-Herr Middle School in Durham.

He also taught for two summers in India, and in Texas, as part of Duke TIP, the Talent Identification Program, which identifies academically gifted students and provides them with intellectually stimulating opportunities.

Through these teaching experiences in different locations and cultures, Kahler observed several factors that affect the quality of education in American schools. One important factor is the training of teachers. Unfortunately, teachers are sometimes expected to teach science without having received an adequate background in the subject.

STEM fellows helped to address this problem by contributing their expertise and by helping to increase the scientific literacy of students and their teachers.

Kahler says that NSF GK-12 has a strong, positive impact to change this because it simultaneously improves the educational experience of students in primary and secondary school and trains graduate students to communicate and teach effectively.

Unfortunately, the NSF GK-12 program is no longer in the NSF budget for 2012.

Sadly the USA is choosing to speed money on things that are likely much less worthwhile to our future economic well being. This has been a continuing trend for the last few decades so it is not a surprise that the USA is investing less and less in science and engineering education while other countries are adding substantially to their investments (China, Singapore, Korea, India…).

As I have stated before I think the USA is making a big mistake reducing the investment in science and engineering, especially when so many other countries have figured how how smart such investments are. The USA has enjoyed huge advantages economically from science and engineering leadership and will continue to. But the potential full economic advantages are being reduced by our decisions to turn away from science investment (in education and other ways).

Related: The Importance of Science EducationTop Countries for Science and Math Education: Finland, Hong Kong and KoreaEconomic Strength Through Technology Leadership